![數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文_第1頁](http://file4.renrendoc.com/view5/M01/2F/28/wKhkGGab_OKAKg2gAAK7gpSWqlo601.jpg)
![數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文_第2頁](http://file4.renrendoc.com/view5/M01/2F/28/wKhkGGab_OKAKg2gAAK7gpSWqlo6012.jpg)
![數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文_第3頁](http://file4.renrendoc.com/view5/M01/2F/28/wKhkGGab_OKAKg2gAAK7gpSWqlo6013.jpg)
![數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文_第4頁](http://file4.renrendoc.com/view5/M01/2F/28/wKhkGGab_OKAKg2gAAK7gpSWqlo6014.jpg)
![數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文_第5頁](http://file4.renrendoc.com/view5/M01/2F/28/wKhkGGab_OKAKg2gAAK7gpSWqlo6015.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第一篇數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第一篇一、在高等數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模思想的重要性
(1)將教材中的數(shù)學(xué)知識(shí)運(yùn)用現(xiàn)實(shí)生活中的對(duì)象進(jìn)行還原,讓學(xué)生樹立數(shù)學(xué)知識(shí)來源于現(xiàn)實(shí)生活的思想觀念。
(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過運(yùn)用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語言,對(duì)現(xiàn)實(shí)生活中的特定對(duì)象的信息、數(shù)據(jù)或者現(xiàn)象進(jìn)行簡化,對(duì)抽象的數(shù)學(xué)對(duì)象進(jìn)行翻譯和歸納,將所求解的數(shù)學(xué)問題中的數(shù)量關(guān)系運(yùn)用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進(jìn)行表達(dá),這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達(dá)能力。
(3)在運(yùn)用數(shù)學(xué)建模思想獲得實(shí)際的答案后,需要運(yùn)用現(xiàn)實(shí)生活對(duì)象的相關(guān)信息對(duì)其進(jìn)行檢驗(yàn),對(duì)計(jì)算結(jié)果的準(zhǔn)確性進(jìn)行檢驗(yàn)和確定。該流程能夠培養(yǎng)學(xué)生運(yùn)用合理的數(shù)學(xué)方法對(duì)數(shù)學(xué)問題進(jìn)行主動(dòng)性、客觀性以及辯證性的分析,最后得到最有效的解決問題的方法。
二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略
1.教師要具備數(shù)學(xué)建模思想意識(shí)
在對(duì)高等數(shù)學(xué)進(jìn)行教學(xué)的過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識(shí)。教師在進(jìn)行高等數(shù)學(xué)教學(xué)之前,首先,要對(duì)所講數(shù)學(xué)內(nèi)容的相關(guān)實(shí)例進(jìn)行查找,有意識(shí)的實(shí)現(xiàn)高等數(shù)學(xué)內(nèi)容和各個(gè)不同領(lǐng)域之間的聯(lián)系;其次,教師要實(shí)現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時(shí)的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細(xì)心發(fā)現(xiàn)現(xiàn)實(shí)生活中的小事,然后運(yùn)用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.實(shí)現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合
3.理清高等數(shù)學(xué)名詞的概念
高等數(shù)學(xué)中的數(shù)學(xué)概念是根據(jù)實(shí)際需要出現(xiàn)的,所以在數(shù)學(xué)的教學(xué)中,教師要引起從實(shí)際問題中提取數(shù)學(xué)概念的整個(gè)過程,對(duì)學(xué)生應(yīng)用數(shù)學(xué)的興趣進(jìn)行培養(yǎng)。例如在高等數(shù)學(xué)
教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進(jìn)行教學(xué)時(shí),要引導(dǎo)學(xué)生理清這兩個(gè)的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?/p>
4.加強(qiáng)數(shù)學(xué)應(yīng)用問題的培養(yǎng)
高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問題:
(1)最值問題
在高等數(shù)學(xué)教材中,最值問題是導(dǎo)數(shù)應(yīng)用中最重要的問題。教師在教學(xué)過程中通過對(duì)最值問題的解題步驟進(jìn)行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進(jìn)行反映。因此,在對(duì)這部分內(nèi)容進(jìn)行教學(xué)時(shí),要增加例題,加大學(xué)生的練習(xí),開拓學(xué)生的思維,讓學(xué)生熟練掌握最值問題的解決辦法。
(2)微分方程
在微分方程的教學(xué)中運(yùn)用數(shù)學(xué)建模思想,能夠有效地解決實(shí)際問題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對(duì)變量和變化率、微元之間的關(guān)系進(jìn)行分析,然后運(yùn)用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對(duì)其進(jìn)行實(shí)驗(yàn),運(yùn)用所得出的定理、規(guī)律來構(gòu)建微分方程;其次,對(duì)其進(jìn)行求解和驗(yàn)證結(jié)果。微分方程的概念主要從實(shí)際引入,堅(jiān)持由淺入深的原則,來對(duì)現(xiàn)實(shí)問題進(jìn)行解決。例如,在對(duì)學(xué)生講解外有引力定律時(shí),讓學(xué)生對(duì)萬有引力的提出、猜想進(jìn)行探究,了解到在其發(fā)展的整個(gè)過程中,數(shù)學(xué)發(fā)揮著十分重要的作用。
(3)定積分
微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對(duì)定積分概念的意義進(jìn)行分析和了解,這樣有利于在對(duì)實(shí)際問題進(jìn)行解決時(shí),樹立“欲積先分”意識(shí),意識(shí)到運(yùn)用定積分是解決微元實(shí)際問題的重要方法。教師在布置作業(yè)題時(shí),要增加該問題的實(shí)例。
三、結(jié)語
總之,在高等數(shù)學(xué)中對(duì)學(xué)生的數(shù)學(xué)建模能力進(jìn)行培養(yǎng),讓學(xué)生在解題的過程中運(yùn)用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問題的能力以及提高學(xué)生數(shù)學(xué)知識(shí)的運(yùn)用能力。
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第二篇一、高等數(shù)學(xué)教學(xué)的現(xiàn)狀
(一)教學(xué)觀念陳舊化
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對(duì)學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動(dòng)。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問題解決,工作效率無法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動(dòng)力。
(二)教學(xué)方法傳統(tǒng)化
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動(dòng)參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用
對(duì)學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進(jìn)行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動(dòng)以及教研活動(dòng),其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識(shí)、實(shí)際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對(duì)學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會(huì)對(duì)復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識(shí)的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識(shí)的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動(dòng)地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施
(一)在公式中使用建模思想
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對(duì)計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對(duì)公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開展教學(xué)。
(二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式
課本例題使用建模思想進(jìn)行解決,老師通過對(duì)例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認(rèn)識(shí)在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競(jìng)賽
一般而言,在競(jìng)賽中可以很好地鍛煉學(xué)生競(jìng)爭意識(shí)以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競(jìng)賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨(dú)自思考,然后在競(jìng)爭的過程中意識(shí)到自己的不足,今后也會(huì)努力學(xué)習(xí),改正錯(cuò)誤,提升自身的能力。
四、結(jié)束語
高等數(shù)學(xué)主要對(duì)學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對(duì)高數(shù)知識(shí)更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。
參考文獻(xiàn)
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[J]。齊齊哈爾師范高等專科學(xué)校學(xué)報(bào),2014(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[J]。教育實(shí)踐與改革,2012(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[J]。長春教育學(xué)院學(xué)報(bào),2014(30):89,95。
[4]劉合財(cái)。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[J]。貴陽學(xué)院學(xué)報(bào),2013(03):63—65。
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第三篇摘要:
數(shù)學(xué)建模是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力的數(shù)學(xué)手段,是數(shù)學(xué)與各個(gè)領(lǐng)域溝通的橋梁,本文先介紹了數(shù)學(xué)建模的概念,然后對(duì)MATLAB軟件相關(guān)特點(diǎn)做出介紹,其次從數(shù)學(xué)建模實(shí)例出發(fā),說明了MATLAB軟件在數(shù)學(xué)建模中的重要作用,結(jié)果表明MATLAB軟件可以使數(shù)學(xué)建模效率提高,結(jié)果清晰、明確,同時(shí)在數(shù)學(xué)教學(xué)方面也有重大意義。
關(guān)鍵詞:
數(shù)學(xué)建模;MATLAB;數(shù)學(xué)模型;數(shù)值計(jì)算
為了說明MATLAB軟件能夠提高數(shù)學(xué)建模的效率和質(zhì)量,本文將以2014年高教杯全國大學(xué)生數(shù)學(xué)競(jìng)賽A題為例,來演示MATLAB軟件在數(shù)學(xué)建模中的作用,下面首先對(duì)數(shù)學(xué)建模做簡要介紹。
1數(shù)學(xué)建模簡介
數(shù)學(xué)建模與數(shù)學(xué)模型
數(shù)學(xué)建模一詞出現(xiàn)的時(shí)間并不是很長,大概可以追溯到30年前,它的出現(xiàn)是基于科學(xué)技術(shù)的進(jìn)步,尤其近半個(gè)世紀(jì)以來,隨著計(jì)算機(jī)技術(shù)的進(jìn)步和發(fā)展,數(shù)學(xué)建模便應(yīng)運(yùn)而生,并得到迅速的發(fā)展,直到現(xiàn)在已經(jīng)大致形成了體系,在我國,數(shù)學(xué)建模比賽也有20多年的時(shí)間了,建模參考書籍越來越多,內(nèi)容越來越完備,不同的書籍對(duì)數(shù)學(xué)建模的定義雖然有所不同,但大致可以歸納位:對(duì)實(shí)際問題進(jìn)行分析,做出簡化假設(shè),分析其內(nèi)在規(guī)律,并運(yùn)用數(shù)學(xué)符號(hào)和數(shù)學(xué)語言將規(guī)律描述出來,再用適當(dāng)?shù)臄?shù)學(xué)工具,得到一個(gè)數(shù)學(xué)結(jié)構(gòu),該結(jié)構(gòu)稱為數(shù)學(xué)模型,建立數(shù)學(xué)模型的過程叫做數(shù)學(xué)建模。
應(yīng)用數(shù)學(xué)去解決實(shí)際問題時(shí),建立數(shù)學(xué)模型是至關(guān)重要的一步,也是比較困難的一步,建立數(shù)學(xué)模型的過程,就是把一個(gè)實(shí)際問題進(jìn)行合理的簡化,并對(duì)相關(guān)信息進(jìn)行調(diào)查、收集、整理,分析出問題的內(nèi)在規(guī)律,并用數(shù)學(xué)符號(hào)將這種隱含的規(guī)律表達(dá)出來,然后運(yùn)用恰當(dāng)?shù)臄?shù)學(xué)方法對(duì)其進(jìn)行分析、計(jì)算,最終解決問題,這一步對(duì)建模者的數(shù)學(xué)基礎(chǔ)要求比較高,要求建模者有較為完善的數(shù)學(xué)體系,并且還要有敏銳的想象力和洞察力,數(shù)學(xué)建模的作用越來越受到數(shù)學(xué)工程界的普遍認(rèn)可,它以成為現(xiàn)代科技者的必備技能之一。
數(shù)學(xué)建模的一般步驟
下面結(jié)合數(shù)學(xué)建模的幾個(gè)環(huán)節(jié)和數(shù)學(xué)建模實(shí)例,簡要介紹MATLAB在數(shù)學(xué)建模中的一般步驟,模型準(zhǔn)備:在建模前要了解問題的實(shí)際背景,搜索問題信息,明確求解目的,從而確定用何種數(shù)學(xué)方法和建立何種數(shù)學(xué)模型;模型假設(shè):根據(jù)實(shí)際對(duì)象的特征和建模的目的,抓住問題的主要因素,對(duì)問題進(jìn)行合理簡化,用精確的語言提出恰當(dāng)?shù)募僭O(shè);模型建立:在假設(shè)的基礎(chǔ)上,利用合理的數(shù)學(xué)工具刻畫各變量、常量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu);④模型求解:利用獲取的數(shù)據(jù)和已有的數(shù)學(xué)方法,來求解上一步的數(shù)學(xué)問題,對(duì)模型的參數(shù)進(jìn)行相應(yīng)計(jì)算⑤模型分析:對(duì)所建立的模型的思路進(jìn)行闡述,對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析;⑥模型檢驗(yàn):將模型與實(shí)際情況進(jìn)行比較,以此來檢驗(yàn)?zāi)P偷臏?zhǔn)確性、合理性,如果不符合實(shí)際情況需重新建立模型;⑦模型的推廣:在現(xiàn)有的模型基礎(chǔ)上,對(duì)模型進(jìn)行更加全面的考慮,使模型更能反映實(shí)際情況。
2建模實(shí)例
由于MATLAB軟件具有很強(qiáng)的數(shù)據(jù)處理和數(shù)據(jù)可視化功能,同時(shí)具備有操作方便的特點(diǎn),所以當(dāng)把MATLAB軟件運(yùn)用在數(shù)學(xué)建模里時(shí),必將提高數(shù)學(xué)建模的質(zhì)量和效率,并能起到事倍功半的效果,下面以2014年高教杯全國大學(xué)生數(shù)學(xué)競(jìng)賽A題為例來說明MATLAB軟件在數(shù)學(xué)建模里的重要作用。
2014年高教杯全國大學(xué)生數(shù)學(xué)競(jìng)賽題目A題是嫦娥三號(hào)軟著陸軌道設(shè)計(jì)與優(yōu)化問題,嫦娥三號(hào)是中國國家航天局嫦娥工程第二階段的登月探測(cè)器,包括著陸器和玉兔號(hào)月球車,嫦娥三號(hào)在高速飛行的情況下,要保證準(zhǔn)確地在月球預(yù)定區(qū)域內(nèi)實(shí)現(xiàn)軟著陸,關(guān)鍵問題是著陸軌道與控制策略問題。在衛(wèi)星著路的過程中,不考慮主減速段,完全由姿態(tài)調(diào)整發(fā)動(dòng)機(jī)控制水平運(yùn)動(dòng)的階段為粗避障和精避障段,為了節(jié)省燃料,應(yīng)盡量減少衛(wèi)星在空中的懸停時(shí)間。題目中附件三、附件四分別是距月球表面2400米和100米的高程圖,根據(jù)高程圖中的數(shù)據(jù)信息,我們可以確定最佳的降落位置。我們可以運(yùn)用MATLAB軟件對(duì)于高程圖的進(jìn)行處理,首先用MATLAB軟件軟件中imread命令將其轉(zhuǎn)化為矩陣形式,然后分別做出月球表面立體的三維圖和等高線二維平面圖,建立數(shù)值地形的不同區(qū)域,我們可以通過三維圖很直觀的觀察到月球表面具體地形、地貌,通過等高線二維圖形,我們可以清楚地看到月球表面地勢(shì)高低變化成度,從而確定衛(wèi)星降落地最佳地點(diǎn)。本文只以100米高程圖作為例子演示,具體地操作程序以及輸出結(jié)果如下:
g=imread(‘附件4距100m處的高程圖.tif’);
%用imread函數(shù)讀取圖片信息,注意路徑要以電腦中圖片的實(shí)際路徑為準(zhǔn)
gg=double(g);
%將圖片中的信息轉(zhuǎn)化為數(shù)值矩陣信息以便以MATLAB軟件進(jìn)行后期處理
gg=gg-1/255;
%將彩色值轉(zhuǎn)為0-1的漸變值以便于觀察
[x,y]=size(gg);
%取原圖大小
[X,Y]=meshgrid(1:y,1:x);
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第四篇摘要:
將數(shù)學(xué)建模思想融入高等數(shù)學(xué)的教學(xué)中來,是目前大學(xué)數(shù)學(xué)教育的重要教學(xué)方式。建模思想的有效應(yīng)用,不僅顯著提高了學(xué)生應(yīng)用數(shù)學(xué)模式解決實(shí)際問題的能力,還在培養(yǎng)大學(xué)生發(fā)散思維能力和綜合素質(zhì)方面起到重要作用。本文試從當(dāng)前高等數(shù)學(xué)教學(xué)現(xiàn)狀著手,分析在高等數(shù)學(xué)中融入建模思想的重要性,并從教學(xué)實(shí)踐中給出相應(yīng)的教學(xué)方法,以期能給同行教師們一些幫助。
關(guān)鍵詞:
數(shù)學(xué)建模;高等數(shù)學(xué);教學(xué)研究
一、引言
建模思想使高等數(shù)學(xué)教育的基礎(chǔ)與本質(zhì)。從目前情況來看,將數(shù)學(xué)建模思想融入高等教學(xué)中的趨勢(shì)越來越明顯。但是在實(shí)際的教學(xué)過程中,大部分高校的數(shù)學(xué)教育仍處在傳統(tǒng)的理論知識(shí)簡單傳授階段。其教學(xué)成果與社會(huì)實(shí)踐還是有脫節(jié)的現(xiàn)象存在,難以讓學(xué)生學(xué)以致用,感受到應(yīng)用數(shù)學(xué)在現(xiàn)實(shí)生活中的魅力,這種教學(xué)方式需要亟待改善。
二、高等數(shù)學(xué)教學(xué)現(xiàn)狀
高等數(shù)學(xué)是現(xiàn)在大學(xué)數(shù)學(xué)教育中的基礎(chǔ)課程,也是一門必修的課程。他能為其他理工科專業(yè)的學(xué)生提供很多種解題方式與解題思路,是很多專業(yè),如自動(dòng)化工程、機(jī)械工程、計(jì)算機(jī)、電氣化等必不可少的基礎(chǔ)課程。同時(shí),現(xiàn)實(shí)生活中也有很多方面都涉及高數(shù)的運(yùn)算,如,銀行理財(cái)基金的使用問題、彩票的概率計(jì)算問題等,從這些方面都可以看出人們不能僅僅把高數(shù)看成是一門學(xué)科而已,它還與日常生活各個(gè)方面有重要的聯(lián)系。但現(xiàn)在很多學(xué)校仍以應(yīng)試教育為主,采取填鴨式教學(xué)方式,加上高數(shù)的教材并沒有與時(shí)俱進(jìn),將其與生活的關(guān)系融入教材內(nèi),使學(xué)生無法意識(shí)到高數(shù)的重要性以及高數(shù)在日常生活中的魅力,因此產(chǎn)生排斥甚至對(duì)抗的心理,只是在臨考前突擊而已。因此,對(duì)高數(shù)進(jìn)行教學(xué)改革是十分有必要的,而且怎么改,怎么讓學(xué)生發(fā)現(xiàn)高數(shù)的魅力,并積極主動(dòng)學(xué)習(xí)高數(shù)也是作為教師所面臨的一個(gè)重大問題。
三、將數(shù)學(xué)建模思想融入高等數(shù)學(xué)的重要性
第一,能夠激發(fā)學(xué)生學(xué)習(xí)高數(shù)的興趣。建模思想實(shí)際上是使用數(shù)學(xué)語言來對(duì)生活中的實(shí)際現(xiàn)象進(jìn)行描述的過程。把建模思想應(yīng)用到高等數(shù)學(xué)的學(xué)習(xí)中,能夠讓學(xué)生們?cè)谌粘I钪欣斫鈹?shù)學(xué)的實(shí)際應(yīng)用狀況與解決日常生活問題的方便性,讓學(xué)生們了解到高數(shù)并不只是一門課程,而是整個(gè)日常生活的基礎(chǔ)。例如,在講解微分方程時(shí),可以引入一些歷史上的一些著名問題,如以Vanmeegren偽造名畫案為代表的贗品鑒定問題、預(yù)報(bào)人口增長的Malthus模型與Logistic模型等。這樣,才能激發(fā)出學(xué)生對(duì)高等數(shù)學(xué)的興趣,并積極投入高等數(shù)學(xué)的學(xué)習(xí)中來。
第二,能夠提高學(xué)生的數(shù)學(xué)素質(zhì)。社會(huì)的高速發(fā)展不斷要求學(xué)生向更全面、更高素質(zhì)的方向發(fā)展。這就要求學(xué)生不僅要懂得專業(yè)知識(shí),還要能夠?qū)I(yè)知識(shí)運(yùn)用到實(shí)際生活中,擁有解決問題的頭腦和實(shí)際操作的技能。這些其實(shí)都可以通過建模思想在高等數(shù)學(xué)課堂中實(shí)現(xiàn)。高等數(shù)學(xué)的包容性、邏輯性都很強(qiáng)。將建模思想融入高等數(shù)學(xué)的教學(xué)中,既能提高學(xué)生的數(shù)學(xué)素質(zhì),還能鍛煉學(xué)生綜合分析問題,解決問題的能力。通過理論與生活實(shí)踐相結(jié)合,達(dá)到社會(huì)發(fā)展的要求,提高自身的社會(huì)競(jìng)爭力。
第三,能夠培養(yǎng)學(xué)生的綜合創(chuàng)新能力?!叭f眾創(chuàng)新”不僅僅是一個(gè)口號(hào),而應(yīng)該是現(xiàn)代大學(xué)生應(yīng)該具備的一種能力。將數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中,能讓大學(xué)生從實(shí)際生活出發(fā),多方位、多角度考慮問題,提高學(xué)生的創(chuàng)新能力。學(xué)生的潛力是可以在多次的建?;顒?dòng)中挖掘出來的。因此教師應(yīng)多組織建?;顒?dòng),讓學(xué)生從實(shí)際生活中組建材料,不斷創(chuàng)新思維,找到解決問題的方式與方法。
四、將建模思想融入高等數(shù)學(xué)的實(shí)踐方法
第一,轉(zhuǎn)變教學(xué)理念。改變傳統(tǒng)教學(xué)思想與教育方式,提高學(xué)生建模的積極性,增強(qiáng)學(xué)生對(duì)建模方式的認(rèn)同。教師不能只是單一的講解理論知識(shí),還需要引導(dǎo)學(xué)生親自體驗(yàn),從互動(dòng)的教學(xué)過程中,理解建模思想的重要性。
第二,在生活問題中應(yīng)用建模思想。其實(shí),很多日常生活中的很多例子,都是可以解決課堂上的問題的。數(shù)學(xué)是來源于生活的。作為教師,應(yīng)該主動(dòng)引領(lǐng)學(xué)生參與實(shí)踐活動(dòng),將課本的知識(shí)盡量與日常問題聯(lián)系到一起,發(fā)動(dòng)學(xué)生主動(dòng)用建模思想解決問題,提高創(chuàng)新能力,從不同的角度,以不同的方式提高解決問題的能力。例如,學(xué)校要組織元旦晚會(huì),需要學(xué)生去采購必需品。超市有多種打折的方式,這時(shí)候教師就可以引導(dǎo)學(xué)生使用建模思想,要求去學(xué)生以模型來分析各種打折方式的優(yōu)缺點(diǎn),并選擇最優(yōu)惠的方式買到最優(yōu)質(zhì)的晚會(huì)用品。這樣學(xué)生才會(huì)發(fā)現(xiàn)建模的樂趣,并了解如何在生活案例中應(yīng)用建模思想。
第三,不斷鞏固和提高建模應(yīng)用。數(shù)學(xué)建模思想融入生活實(shí)踐不是一蹴而就的,而是一個(gè)不斷實(shí)踐、循序漸進(jìn)的過程。人們也不能為了應(yīng)用建模思想而將日常生活生拉硬套。教師也應(yīng)該盡可能多地搜集生活中的案例,將建模思想與生活實(shí)踐更靈活地聯(lián)系在一起。不斷地由淺入深,將建模思想牢牢地印在學(xué)生的腦海中。并根據(jù)每個(gè)學(xué)生的獨(dú)特性,不斷開發(fā)學(xué)生的創(chuàng)新潛力和發(fā)散思維能力,提高邏輯思維能力和空間想象力,在實(shí)踐中鞏固深化建模思想。五、結(jié)束語綜上所述,將建模思想融入高等數(shù)學(xué)教學(xué)中,能顯著提高課堂教學(xué)質(zhì)量和學(xué)生解決問題的能力,因此教師應(yīng)從整體上把握高數(shù)的教學(xué)體系,讓學(xué)生逐步建立建模思維,不斷深化和鞏固用建模思想解決問題的能力。只有這樣,融入數(shù)學(xué)建模思想的高等數(shù)學(xué)的教學(xué)效果才會(huì)起到應(yīng)有的作用。
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第五篇摘要:
現(xiàn)代物流產(chǎn)業(yè)是當(dāng)今新型的經(jīng)濟(jì)產(chǎn)業(yè),國民經(jīng)濟(jì)建設(shè)中,其已幾乎擴(kuò)展到國民經(jīng)濟(jì)的各個(gè)領(lǐng)域,具有廣闊的發(fā)展前景和巨大的發(fā)展?jié)摿ΑM瑫r(shí)現(xiàn)代物流業(yè)具有極強(qiáng)的綜合性,因而正確的物流需求預(yù)測(cè)對(duì)于物流產(chǎn)業(yè)的宏觀政策制定,抑或是微觀層面的企業(yè)規(guī)劃和經(jīng)營,都具有指導(dǎo)作用。貨物周轉(zhuǎn)量是物流需求非常重要的一項(xiàng)指標(biāo),文章結(jié)合物流需求的特點(diǎn),通過貨物周轉(zhuǎn)量對(duì)具有交通中樞地位的武漢市物流需求影響進(jìn)行預(yù)測(cè)。本文運(yùn)用貨物周轉(zhuǎn)量,生產(chǎn)總值兩指標(biāo),結(jié)合2000-2012年武漢地區(qū)GDP值,基于雙變量線性回歸模型方法,對(duì)交通樞紐武漢進(jìn)行物流需求分析預(yù)測(cè),以說明武漢未來的物流需求情況。
關(guān)鍵詞:
貨物周轉(zhuǎn)量;回歸模型;物流需求預(yù)測(cè)
引言
武漢,位于中國腹地中心,物流資源豐富,全國重要的交通樞紐,素有“九省通衢”之稱。其在發(fā)展現(xiàn)代物流業(yè)方面具有得天獨(dú)厚的優(yōu)勢(shì),因而武漢提出了以發(fā)展物流來實(shí)現(xiàn)本地經(jīng)濟(jì)的“跨越式發(fā)展”,并已通過把現(xiàn)代物流業(yè)作為新的經(jīng)濟(jì)增長點(diǎn)列入全市發(fā)展計(jì)劃之中。
然而,作為新型的經(jīng)濟(jì)產(chǎn)業(yè),現(xiàn)代物流業(yè)具有很強(qiáng)的綜合性。無論是在物流產(chǎn)業(yè)的宏觀決策上,還是物流企業(yè)規(guī)劃和經(jīng)營的微觀層面,都需要以正確的預(yù)測(cè)為先導(dǎo)。我國經(jīng)濟(jì)已由改革開放后的經(jīng)濟(jì)快速增長階段進(jìn)入到中速發(fā)展過程中,在經(jīng)濟(jì)調(diào)整和轉(zhuǎn)型之中,已充分認(rèn)識(shí)到現(xiàn)代物流業(yè)的重要性,高效的現(xiàn)代物流業(yè)對(duì)于地區(qū)經(jīng)濟(jì)發(fā)展或者國家經(jīng)濟(jì)進(jìn)步的支撐作用越來越明顯,。因此,在這樣的背景之下,以合理的物流需求預(yù)測(cè)為基礎(chǔ)所作出科學(xué)的決策,是保證物流產(chǎn)業(yè)健康發(fā)展的必要措施。
一、物流需求預(yù)測(cè)
物流需求預(yù)測(cè),就是利用所能涉及到的歷史資料和市場(chǎng)信息,利用一定的經(jīng)驗(yàn)判斷、技術(shù)方法和預(yù)測(cè)模型,對(duì)未來的物流需求狀況進(jìn)行科學(xué)的分析、估算和推斷。物流需求預(yù)測(cè)的目的主要是確定物流服務(wù)供應(yīng)系統(tǒng)所需的能力,同時(shí)為其建設(shè)規(guī)模提供數(shù)據(jù)方面的依據(jù)。
物流需求預(yù)測(cè)的意義在于指導(dǎo)和調(diào)節(jié)人們的物流管理活動(dòng),從而能夠采取適當(dāng)?shù)牟呗院痛胧?,以謀求最大的利益。其作用主要體現(xiàn)在:
(一)物流需求預(yù)測(cè)是是物流管理的必要環(huán)節(jié)
對(duì)物流發(fā)展中的各個(gè)因素實(shí)施控制是物流企業(yè)進(jìn)行規(guī)劃和經(jīng)營的前提,而這種控制需要依靠預(yù)測(cè)來未完成。因此,物流需求預(yù)測(cè)是物流管理的必要環(huán)節(jié),一切的管理活動(dòng)必須從對(duì)信息的分析和預(yù)測(cè)開始。
(二)物流需求預(yù)測(cè)能夠改善物流管理
物流管理活動(dòng)中,若能預(yù)測(cè)了解和把握市場(chǎng)需求的未來變化,那么相關(guān)企業(yè)就能夠采取有效的戰(zhàn)略。可以說,物流需求預(yù)測(cè)是物流管理的重要手段。
(三)物流需求預(yù)測(cè)能夠?yàn)槲锪靼l(fā)展規(guī)劃和管理經(jīng)營決策提供重要的科學(xué)依據(jù)
物流需求預(yù)測(cè)可以描繪出市場(chǎng)需求的變動(dòng)趨勢(shì),從而推測(cè)出物流發(fā)展需求的趨勢(shì),并進(jìn)行比較系統(tǒng)的全面的分析和預(yù)見,以避免決策的片面性的局限性。
二、武漢物流需求的雙變量線性回歸模型預(yù)測(cè)
(一)回歸模型的一般形式
回歸分析預(yù)測(cè)法是一種重要的市場(chǎng)預(yù)測(cè)方法,其是在分析市場(chǎng)現(xiàn)象自變量和因變量之間相關(guān)關(guān)系的基礎(chǔ)上,來建立變量之間的回歸方程,并將其作為預(yù)測(cè)模型。
回歸模型的一般形式為:
式①中,X為自變量,Y為因變量,和為未知系數(shù),為誤差分量。當(dāng)然,模型具有實(shí)用價(jià)值的前提是擬合度良好且回歸系數(shù)顯著。
(二)回歸模型的預(yù)測(cè)
1.指標(biāo)的確定
貨物周轉(zhuǎn)量,是指各種運(yùn)輸工具在報(bào)告期內(nèi)實(shí)際運(yùn)送的每批貨物重量分別乘其運(yùn)送距離的累計(jì)數(shù)。其不僅包括了運(yùn)輸對(duì)象的數(shù)量,還包括了運(yùn)輸距離因素,因而能比較全面地反映運(yùn)輸生產(chǎn)結(jié)果。其是反映物流業(yè)需求的重要指標(biāo)。
貨物周轉(zhuǎn)量的影響因素很多,通過參考大量文獻(xiàn)可知,貨物周轉(zhuǎn)量與生產(chǎn)總值存在顯著的相關(guān)性,綜合考慮數(shù)據(jù)的可查詢性,本文選取武漢市近年來的貨物周轉(zhuǎn)量和生產(chǎn)總值作為變量,進(jìn)行雙變量線性回歸模型分析并進(jìn)行相應(yīng)預(yù)測(cè)。
以貨物周轉(zhuǎn)量為因變量,武漢生產(chǎn)總值為自變量。下表是武漢市2000年到2012年的相關(guān)原始數(shù)據(jù):
2.回歸模型設(shè)定
一般來說,EXCEL和SPSS在預(yù)測(cè)應(yīng)用方面均存在各自的優(yōu)缺點(diǎn),鑒于此,本文將二者結(jié)合起來應(yīng)用,充分利用SPSS能夠準(zhǔn)確容易獲取預(yù)測(cè)值,且模型多樣化,快速方便的優(yōu)勢(shì)以及EXCEL在繪制圖形方面簡便的特點(diǎn),將首先用SPSS進(jìn)行相關(guān)預(yù)測(cè)模型的選擇和預(yù)測(cè)值確定,再用EXCEL進(jìn)行預(yù)測(cè)值繪圖,從而簡單快速的完成相關(guān)預(yù)測(cè)。則可以設(shè)定雙變量線性回歸模型為:
其中,生產(chǎn)總值為,貨物周轉(zhuǎn)量為。
用EXCEL作貨物周轉(zhuǎn)量和生產(chǎn)總值的散點(diǎn)圖,如圖1所示:
3.回歸分析
根據(jù)上述數(shù)據(jù),通過統(tǒng)計(jì)軟件進(jìn)行線性回歸分析:
4.回歸方程有效性檢驗(yàn)
(1)擬合優(yōu)度的檢驗(yàn)
則從表中可知,相關(guān)性系數(shù)為R=,相關(guān)性明顯;同時(shí)調(diào)整后的擬合系數(shù)R2=,說明在貨物周轉(zhuǎn)量的總變差中,模型所作出的解釋部分達(dá)到了,即模型的擬合效果顯著。
(2)回歸參數(shù)的顯著性檢驗(yàn)
回歸方程的顯著性檢驗(yàn)結(jié)果見上表,統(tǒng)計(jì)量F=,相應(yīng)的置信水平為;,結(jié)果表明回歸方程非常顯著;同時(shí)常數(shù)和自變量系數(shù)的回歸方程檢驗(yàn)的置信水平由表2知為;,即模型的系數(shù)顯著。
(3)模型預(yù)測(cè)效果的檢驗(yàn)通過統(tǒng)計(jì)軟件得出相應(yīng)回歸模型的同時(shí),將該模型從2000-2012年的預(yù)測(cè)值保存到數(shù)據(jù)視圖中,如下表所示從表中可知,貨物周轉(zhuǎn)量的絕對(duì)誤差最大值為;相對(duì)誤差最;平均相對(duì)誤差為,可以預(yù)見,模型總體預(yù)測(cè)效果良好。再從預(yù)測(cè)值和實(shí)際值的曲線圖形來比較,將原始數(shù)據(jù)和預(yù)測(cè)值數(shù)據(jù)復(fù)制到EXCEL中,利用EXCEL繪圖簡便的特點(diǎn),繪制中貨物周轉(zhuǎn)量的實(shí)際值圖形和預(yù)測(cè)值圖形,如下圖所示圖2預(yù)測(cè)值與實(shí)際值的曲線比較從圖中可知,回歸預(yù)測(cè)曲線擬合情況良好,從而進(jìn)一步證明了回歸預(yù)測(cè)模型的有效性。
三、結(jié)論分析
通過對(duì)武漢2000-2012年相關(guān)數(shù)據(jù)進(jìn)行線性回歸預(yù)測(cè),能夠得到如下結(jié)論:
第一,由回歸預(yù)測(cè)方程可知,貨物周轉(zhuǎn)量與生產(chǎn)總值(GDP)呈正相關(guān)關(guān)系,具體表現(xiàn)為一單位的GDP增長,能夠引起單位的貨物周轉(zhuǎn)量;同時(shí)由圖2的曲線圖可知,貨物周轉(zhuǎn)量存在明顯的上升趨勢(shì)。
第二,貨物周轉(zhuǎn)量是一個(gè)總體規(guī)模性指標(biāo),是從總量上反映物流需求。
這種方法比較概括,雖存在缺陷,但對(duì)物流需求的宏觀把握,制定宏觀物流發(fā)展戰(zhàn)略還是頗具價(jià)值;同時(shí),本文只研究了生產(chǎn)總值對(duì)貨物周轉(zhuǎn)量的影響,實(shí)際上,貨物周圍量的影響因素很多,比如宏觀面上的經(jīng)濟(jì)政策,氣候條件,微觀層面上的運(yùn)輸距離以及貨運(yùn)總量等;另外,貨物周轉(zhuǎn)量只是代表物流需求的一個(gè)量,并不能完全代表物流需求,因而需要根據(jù)實(shí)際情況適實(shí)地對(duì)其加以修正。
參考文獻(xiàn):
[1]王雪瑞,王昭君.基于雙變量線性回歸模型的物流需求預(yù)測(cè)[J].物流科技.2009(09).
[2]楊帥.武漢市物流需求預(yù)測(cè)[J].當(dāng)代經(jīng)濟(jì).2007(10).
[3]汪宇翰.預(yù)測(cè)物流需求的一元線性回歸分析方法[J].商場(chǎng)現(xiàn)代化.2006(13).
[4]李振,王興秋,吳耀華.貨運(yùn)量回歸預(yù)測(cè)工具EXCEL和SPSS結(jié)合應(yīng)用研究[J].物流科技.2010(08).
[5]張文彤,閆潔.SPSS統(tǒng)計(jì)分析基礎(chǔ)教程[M].北京:高等教育出版社,2004.
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第六篇數(shù)學(xué)建模論文范文一:建模在高等數(shù)學(xué)教學(xué)中的作用及其具體運(yùn)用
一、高等數(shù)學(xué)教學(xué)的現(xiàn)狀
(一)教學(xué)觀念陳舊化
就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對(duì)學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動(dòng)。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問題解決,工作效率無法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動(dòng)力。
(二)教學(xué)方法傳統(tǒng)化
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動(dòng)參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用
對(duì)學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進(jìn)行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動(dòng)以及教研活動(dòng),其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識(shí)、實(shí)際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對(duì)學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會(huì)對(duì)復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識(shí)的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識(shí)的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動(dòng)地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施
(一)在公式中使用建模思想
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對(duì)計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對(duì)公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開展教學(xué)。
(二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式
課本例題使用建模思想進(jìn)行解決,老師通過對(duì)例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認(rèn)識(shí)在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競(jìng)賽
一般而言,在競(jìng)賽中可以很好地鍛煉學(xué)生競(jìng)爭意識(shí)以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競(jìng)賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨(dú)自思考,然后在競(jìng)爭的過程中意識(shí)到自己的不足,今后也會(huì)努力學(xué)習(xí),改正錯(cuò)誤,提升自身的能力。
四、結(jié)束語
高等數(shù)學(xué)主要對(duì)學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對(duì)高數(shù)知識(shí)更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。
參考文獻(xiàn)
[1]謝鳳艷,楊永艷.高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[J].齊齊哈爾師范高等??茖W(xué)校學(xué)報(bào),2014(02):119-120.
[2]李薇.在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[J].教育實(shí)踐與改革,2012(04):177-178,189.
[3]楊四香.淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[J].長春教育學(xué)院學(xué)報(bào),2014(30):89,95.
[4]劉合財(cái).在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[J].貴陽學(xué)院學(xué)報(bào),2013(03):63-65.
數(shù)學(xué)建模論文范文二:數(shù)學(xué)建模教學(xué)中數(shù)學(xué)素養(yǎng)和創(chuàng)新意識(shí)的培養(yǎng)
創(chuàng)新人才的培養(yǎng)是新的時(shí)代對(duì)高等教育提出的新要求.培養(yǎng)高質(zhì)量、高層次人才不僅需要傳統(tǒng)意義上的邏輯思維能力、推理演算能力,更需要具備對(duì)所涉及的專業(yè)問題建立數(shù)學(xué)模型,進(jìn)行數(shù)學(xué)實(shí)驗(yàn),利用先進(jìn)的計(jì)算工具、數(shù)學(xué)軟件進(jìn)行數(shù)值求解和做出定量分析的能力.
因此,如何培養(yǎng)學(xué)生的求知欲,如何培養(yǎng)學(xué)生的學(xué)習(xí)積極性,如何培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力已成為高等教育迫切需要解決的問題[1].
在數(shù)學(xué)教學(xué)中,傳統(tǒng)的數(shù)學(xué)教學(xué)往往注重知識(shí)的傳授、公式的推導(dǎo)、定理的證明以及應(yīng)用能力的培養(yǎng).盡管這種模式并非一無是處,甚至有時(shí)還相當(dāng)成功,但它不能有效地激發(fā)廣大學(xué)生的求知欲,不能有效地培養(yǎng)學(xué)生的學(xué)習(xí)積極性,不能有效地培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力.
而如何培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力,既沒有現(xiàn)成的模式可循,也沒有既定的方法可套用,只能靠廣大教師不斷探索和實(shí)踐.
近年來,國內(nèi)幾乎所有大學(xué)都相繼開設(shè)了數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課,在人才培養(yǎng)和學(xué)科競(jìng)賽上都取得了顯著的成效.數(shù)學(xué)建模是指對(duì)特定的現(xiàn)象,為了某一目的作一些必要的簡化和假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)理論得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),這個(gè)數(shù)學(xué)結(jié)構(gòu)即為數(shù)學(xué)模型,建立這個(gè)數(shù)學(xué)模型的過程即為數(shù)學(xué)建模[2].
所謂數(shù)學(xué)教學(xué)中的數(shù)學(xué)實(shí)驗(yàn),就是從給定的實(shí)際問題出發(fā),借助計(jì)算機(jī)和數(shù)學(xué)軟件,讓學(xué)生在數(shù)字化的實(shí)驗(yàn)中去學(xué)習(xí)和探索,并通過自己設(shè)計(jì)和動(dòng)手,去體驗(yàn)問題解決的教學(xué)活動(dòng)過程.數(shù)學(xué)實(shí)驗(yàn)是數(shù)學(xué)建模的延伸,是數(shù)學(xué)學(xué)科知識(shí)在計(jì)算機(jī)上的實(shí)現(xiàn),從而使高度抽象的數(shù)學(xué)理論成為生動(dòng)具體的可視性過程.
因此,數(shù)學(xué)實(shí)驗(yàn)就是一個(gè)以學(xué)生為主體,以實(shí)際問題為載體,以計(jì)算機(jī)為媒體,以數(shù)學(xué)軟件為工具,以數(shù)學(xué)建模為過程,以優(yōu)化數(shù)學(xué)模型為目標(biāo)的數(shù)學(xué)教學(xué)活動(dòng)過程[3-7].
因此,如何把實(shí)際問題與所學(xué)的數(shù)學(xué)知識(shí)聯(lián)系起來;如何根據(jù)實(shí)際問題提煉數(shù)學(xué)模型;建模的方法和技巧;數(shù)學(xué)模型所涉及到的各類算法以及這些算法在相應(yīng)數(shù)學(xué)軟件平臺(tái)上的實(shí)現(xiàn)等問題就成了我們研究的重點(diǎn).現(xiàn)結(jié)合教學(xué)實(shí)踐,談?wù)劰P者在數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課的教學(xué)中總結(jié)的幾點(diǎn)看法.
1掌握數(shù)學(xué)語言獨(dú)有的特點(diǎn)和表達(dá)形式
準(zhǔn)確使用數(shù)學(xué)語言模擬現(xiàn)實(shí)模型數(shù)學(xué)語言是表達(dá)數(shù)學(xué)思想的專門語言,它是自然語言發(fā)展到高級(jí)狀態(tài)時(shí)的特殊形式,是人類基于思維、認(rèn)知的特殊需要,按照公有思維、認(rèn)知法則而制造出來的語言及其體系,給人們提供一套完整的并不斷精細(xì)、完善、完美的思維和認(rèn)知程序、規(guī)則、方法.
用數(shù)學(xué)語言進(jìn)行交流和良好的符號(hào)意識(shí)是重要的數(shù)學(xué)素質(zhì).數(shù)學(xué)建模教學(xué)是以訓(xùn)練學(xué)生的思維為核心,而語言和思維又是密不可分的.能否成功地進(jìn)行數(shù)學(xué)交流,不僅涉及一個(gè)人的數(shù)學(xué)能力,而且也涉及到一個(gè)人的思路是否開闊,頭腦是否開放,是否尊重并且愿意考慮各方面的不同意見,是否樂于接受新的思想感情觀念和新的行為方式.數(shù)學(xué)建模是利用數(shù)學(xué)語言模擬現(xiàn)實(shí)的模型,把現(xiàn)實(shí)模型抽象、簡化為某種數(shù)學(xué)結(jié)構(gòu)是數(shù)學(xué)模型的基本特征.
現(xiàn)實(shí)問題要通過數(shù)學(xué)方法獲得解決,首先必須將其中的非數(shù)學(xué)語言數(shù)學(xué)化,摒棄其中表面的具體敘述,抽象出其中的數(shù)學(xué)本質(zhì),形成數(shù)學(xué)模型.通過分析現(xiàn)實(shí)中的數(shù)學(xué)現(xiàn)象,對(duì)常見的數(shù)學(xué)現(xiàn)象進(jìn)行數(shù)學(xué)語言描述,從而將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題來解決.
2借助數(shù)學(xué)建模教學(xué)使學(xué)生學(xué)會(huì)使用數(shù)學(xué)語言構(gòu)建數(shù)學(xué)模型
根據(jù)現(xiàn)階段普通高校學(xué)生年齡特點(diǎn)和知識(shí)結(jié)構(gòu),我們可以通過數(shù)學(xué)建模對(duì)學(xué)生加強(qiáng)數(shù)學(xué)語言能力的培養(yǎng),讓他們熟練掌握數(shù)學(xué)語言,以期提升學(xué)生的形象思維、抽象思維、邏輯推理和表達(dá)能力,提高學(xué)生的數(shù)學(xué)素質(zhì)和數(shù)學(xué)能力.在數(shù)學(xué)建模教學(xué)過程中,教師要力求做到用詞準(zhǔn)確,敘述精煉,前后連貫,邏輯性強(qiáng).在問題的重述和分析中揭示數(shù)學(xué)語言的嚴(yán)謹(jǐn)性;在數(shù)學(xué)符號(hào)說明和模型的建立求解中揭示數(shù)學(xué)語言的簡約性,彰顯數(shù)學(xué)語言的邏輯性、精確性和情境性,突出數(shù)學(xué)符號(hào)語言含義的深刻性;在模型的分析和結(jié)果的羅列中,顯示圖表語言的直觀性,展示數(shù)學(xué)語言的確定意義、語義和語法;在模型的應(yīng)用和推廣中,顯示出數(shù)學(xué)符號(hào)語言的推動(dòng)力的獨(dú)特魅力.
而在學(xué)生的書面作業(yè)或論文報(bào)告中,注意培養(yǎng)學(xué)生數(shù)學(xué)語言表達(dá)的規(guī)范性.書面表達(dá)是數(shù)學(xué)語言表達(dá)能力的一種重要形式.通過教師數(shù)學(xué)建模教學(xué)表述規(guī)范的樣板和學(xué)生嚴(yán)格的書面表達(dá)的長期訓(xùn)練來完成.在書面表達(dá)上,主要應(yīng)做到思維清晰、敘述簡潔、書寫規(guī)范.例如在建立模型和求解上,嚴(yán)格要求學(xué)生在模型的假設(shè),符號(hào)說明、模型的建立和求解,圖形的繪制、變量的限制范圍、模型的分析與推廣方面,做到嚴(yán)謹(jǐn)規(guī)范.
對(duì)學(xué)生在利用建模解決問題時(shí)使用符號(hào)語言的不準(zhǔn)確、不規(guī)范、不簡潔等方面要及時(shí)糾正.
3借助數(shù)學(xué)實(shí)驗(yàn)教學(xué),展示高度抽象
的數(shù)學(xué)理論成為具體的可視性過程要培養(yǎng)創(chuàng)新人才,上好數(shù)學(xué)實(shí)驗(yàn)課,首先要有創(chuàng)新型的教師,建立起一支_懂實(shí)驗(yàn)__會(huì)試驗(yàn)__能創(chuàng)新_的教師隊(duì)伍.由于數(shù)學(xué)實(shí)驗(yàn)課理論聯(lián)系實(shí)際,特點(diǎn)鮮明,內(nèi)容新穎,方法特別,所以能夠上好數(shù)學(xué)實(shí)驗(yàn)課,教師就必須具備扎實(shí)的數(shù)學(xué)理論功底,計(jì)算機(jī)軟件應(yīng)用操作能力,良好的科研素質(zhì)與科研能力.
因此,數(shù)學(xué)與統(tǒng)計(jì)學(xué)院就需要選取部分教師,主攻數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)、數(shù)值分析課程.優(yōu)先選派數(shù)學(xué)實(shí)驗(yàn)教師定期出去進(jìn)修深造提高,以便真正形成一支_懂實(shí)驗(yàn)__會(huì)實(shí)驗(yàn)__能創(chuàng)新_的教師隊(duì)伍.實(shí)驗(yàn)課的地位要給予應(yīng)有的重視.我院現(xiàn)存的一個(gè)重要表現(xiàn)就是實(shí)驗(yàn)設(shè)備不足,實(shí)驗(yàn)室開放時(shí)間不夠.為了確保數(shù)學(xué)實(shí)驗(yàn)有物質(zhì)條件上的保證,必須建立數(shù)學(xué)實(shí)驗(yàn)與數(shù)學(xué)建模實(shí)驗(yàn)室.
配備足夠的高性能計(jì)算機(jī),全天候?qū)W(xué)生開放,盡快盡早淘汰陳舊的計(jì)算機(jī)設(shè)備.精心設(shè)計(jì)實(shí)驗(yàn)內(nèi)容,強(qiáng)化典型實(shí)驗(yàn),培養(yǎng)寬厚扎實(shí)理論水平;精選實(shí)驗(yàn)內(nèi)容,加強(qiáng)學(xué)生之間的互動(dòng),培養(yǎng)協(xié)作意識(shí)和團(tuán)隊(duì)精神.在實(shí)驗(yàn)教學(xué)時(shí)數(shù)有限的情況下,依據(jù)培養(yǎng)目標(biāo)和教學(xué)綱要,對(duì)教材中的實(shí)驗(yàn)內(nèi)容進(jìn)行選擇、設(shè)計(jì).要最大限度地開發(fā)學(xué)生的創(chuàng)造性思維,數(shù)學(xué)實(shí)驗(yàn)在項(xiàng)目設(shè)計(jì)過程中應(yīng)當(dāng)遵循適應(yīng)性、趣味性、靈活性、科學(xué)性、漸進(jìn)性和應(yīng)用性的基本原則.
選擇基礎(chǔ)性試驗(yàn),重點(diǎn)培養(yǎng)寬厚扎實(shí)的理論水平,提高對(duì)數(shù)學(xué)理論與方法的深刻理解.熟練各種數(shù)學(xué)軟件的應(yīng)用與開發(fā),提高計(jì)算機(jī)應(yīng)用能力,增強(qiáng)實(shí)踐應(yīng)用技能;增加綜合性實(shí)驗(yàn)和設(shè)計(jì)性實(shí)驗(yàn),從實(shí)際問題出發(fā),培養(yǎng)學(xué)生分析問題,解決問題的能力,強(qiáng)化創(chuàng)新思維的開發(fā).
教學(xué)方法上實(shí)行啟發(fā)參與式教學(xué)法:啟發(fā)-參與-誘導(dǎo)-提高.充分發(fā)揮學(xué)生主體作用,以學(xué)生親自動(dòng)腦動(dòng)手為主.
教師先提出問題,對(duì)實(shí)驗(yàn)內(nèi)容,實(shí)驗(yàn)?zāi)繕?biāo),進(jìn)行必要的啟發(fā);然后充分發(fā)揮學(xué)生主體作用,學(xué)生動(dòng)手操作,每個(gè)命令、語句學(xué)生都要在計(jì)算機(jī)上操作得到驗(yàn)證;根據(jù)學(xué)生出現(xiàn)的情況,老師總結(jié)學(xué)生出現(xiàn)的問題,進(jìn)行進(jìn)一步的誘導(dǎo);再讓其理清思路,再次動(dòng)手實(shí)踐,從理論與實(shí)踐的結(jié)合上獲得能力上提高.數(shù)學(xué)實(shí)驗(yàn)是一門強(qiáng)調(diào)實(shí)踐、強(qiáng)調(diào)應(yīng)用的課程.
數(shù)學(xué)實(shí)驗(yàn)將數(shù)學(xué)知識(shí)、數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用三者融為一體,可以使學(xué)生深入理解數(shù)學(xué)的基本概念和理論,掌握數(shù)值計(jì)算方法,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)使用計(jì)算機(jī)解決實(shí)際問題的能力,是一門實(shí)踐性很強(qiáng)的課程.在這一教學(xué)活動(dòng)中,通過數(shù)學(xué)軟件如MAT-LAB、Mathematica、SPSS的教學(xué)和綜合數(shù)學(xué)實(shí)驗(yàn),如碎片拼接、罪犯藏匿地點(diǎn)的查找、光伏電池的連接、野外漂流管理、水資源的有效利用、葡萄酒的分類等,通這些實(shí)際問題最終的數(shù)學(xué)化的解決,將高度抽象的數(shù)學(xué)理論呈現(xiàn)為生動(dòng)具體的可視性結(jié)論,展示數(shù)學(xué)模型與計(jì)算機(jī)技術(shù)相結(jié)合的高度抽象的數(shù)學(xué)理論成為生動(dòng)具體的可視性過程.
4突出學(xué)生的主體作用,循序漸進(jìn)培養(yǎng)學(xué)生學(xué)習(xí)、實(shí)踐到創(chuàng)新
實(shí)踐教學(xué)的目的是要提高學(xué)生應(yīng)用所學(xué)知識(shí)分析、解決實(shí)際問題的綜合能力.
在教學(xué)中,搭建數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)這個(gè)平臺(tái),提示學(xué)生用計(jì)算機(jī)解決經(jīng)過簡化的問題,或自己提出實(shí)驗(yàn)問題,設(shè)計(jì)實(shí)驗(yàn)步驟,觀察實(shí)驗(yàn)結(jié)果,尤其是將龐大繁雜的數(shù)學(xué)計(jì)算交給計(jì)算機(jī)完成,擺脫過去害怕數(shù)學(xué)計(jì)算、畫函數(shù)圖像、解方程等任務(wù),避免學(xué)生一見到龐大的數(shù)學(xué)計(jì)算公式就會(huì)產(chǎn)生畏懼心理,從而喪失信心,讓學(xué)生體會(huì)到在數(shù)學(xué)面前自己由弱者變成了強(qiáng)者,由失敗者變成了勝利者、成功者.
再設(shè)計(jì)讓學(xué)生自己動(dòng)手去解決的各類實(shí)際問題,使學(xué)生通過對(duì)實(shí)際問題的仔細(xì)分析、作出合理假設(shè)、建立模型、求解模型及對(duì)結(jié)果進(jìn)行分析、檢驗(yàn)、總結(jié)等,解決實(shí)際問題,逐步培養(yǎng)學(xué)生熟練使用計(jì)算機(jī)和數(shù)學(xué)軟件的能力以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的意識(shí)和能力.
同時(shí),給學(xué)生提供大量的上機(jī)實(shí)踐的機(jī)會(huì),提高學(xué)生應(yīng)用數(shù)學(xué)軟件的能力.一個(gè)實(shí)際問題構(gòu)成一個(gè)實(shí)驗(yàn)內(nèi)容,通過實(shí)踐環(huán)節(jié)加大訓(xùn)練力度,并要求學(xué)生通過計(jì)算機(jī)編程求解、編寫實(shí)驗(yàn)報(bào)告等形式,達(dá)到提高學(xué)生解決實(shí)際問題綜合能力的目標(biāo).數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)課程通過實(shí)際問題---方法與分析---范例---軟件---實(shí)驗(yàn)---綜合練習(xí)的教學(xué)過程,以實(shí)際問題為載體,以大學(xué)基本數(shù)學(xué)知識(shí)為基礎(chǔ),采用自學(xué)、講解、討論、試驗(yàn)、文獻(xiàn)閱讀等方式,在教師的逐步指導(dǎo)下,學(xué)習(xí)基本的建模與計(jì)算方法.
通過學(xué)習(xí)查閱文獻(xiàn)資料、用所學(xué)的數(shù)學(xué)知識(shí)和計(jì)算機(jī)技術(shù),借助適當(dāng)?shù)臄?shù)學(xué)軟件,學(xué)會(huì)用數(shù)學(xué)知識(shí)去解決實(shí)際問題的一些基本技巧與方法.通過實(shí)驗(yàn)過程的學(xué)習(xí),加深學(xué)生對(duì)數(shù)學(xué)的了解,使同學(xué)們應(yīng)用數(shù)學(xué)方法的能力和發(fā)散性思維的能力得到進(jìn)一步的培養(yǎng).實(shí)踐已證明,數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)課這門課深受學(xué)生歡迎,它的教學(xué)無論對(duì)培養(yǎng)創(chuàng)新型人才還是應(yīng)用型人才都能發(fā)揮其他課程無法替代的作用.
5具體的教學(xué)策略和途徑
數(shù)學(xué)建模課程和數(shù)學(xué)實(shí)驗(yàn)課程同時(shí)開設(shè),在課程教學(xué)中,要盡可能做到如下幾個(gè)方面:
1)注重背景的闡述
讓學(xué)生了解問題背景,才能知道解決實(shí)際問題需要哪些知識(shí),才能做出貼近實(shí)際的假設(shè),而這恰恰是建立一個(gè)能夠解決實(shí)際問題的數(shù)學(xué)模型的前提.再者,問題背景越是清晰,越能夠體現(xiàn)問題的重要性,這樣才能激發(fā)學(xué)生解決實(shí)際問題的興趣.
2)注重模型建立與求解過程中的數(shù)學(xué)語言的使用
在做好實(shí)際問題的簡化后,使用精煉的數(shù)學(xué)符號(hào)表示現(xiàn)實(shí)含義是數(shù)學(xué)語言使用的彰顯.基于必要的背景知識(shí),建立符合現(xiàn)實(shí)的數(shù)學(xué)模型,通過多個(gè)方面對(duì)模型進(jìn)行修正,向?qū)W生展示不同的條件相對(duì)應(yīng)的數(shù)學(xué)模型對(duì)于現(xiàn)實(shí)問題的解決.在模型的求解上,嚴(yán)格要求學(xué)生在模型的假設(shè),符號(hào)說明、圖形的繪制、變量的限制范圍、模型的分析與推廣方面,做到嚴(yán)謹(jǐn)規(guī)范.對(duì)學(xué)生在利用建模解決問題時(shí)使用符號(hào)語言的不準(zhǔn)確、不規(guī)范、不簡潔等方面及時(shí)糾正.
3)注重經(jīng)典算法的數(shù)學(xué)軟件的實(shí)現(xiàn)和改進(jìn)
由于實(shí)際問題的特殊性導(dǎo)致數(shù)學(xué)模型沒有固定的模式,這就要求既要熟練掌握一般數(shù)學(xué)軟件和算法的實(shí)現(xiàn),又要善于改進(jìn)和總結(jié),使得現(xiàn)有的算法和程序能夠通過修正來解決實(shí)際問題,這對(duì)于學(xué)生能力的培養(yǎng)不可或缺.只有不斷的學(xué)習(xí)和總結(jié),才有數(shù)學(xué)素養(yǎng)的培養(yǎng)和創(chuàng)新能力的提高.
參考文獻(xiàn):
[1]葉其孝.把數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)的思想和方法融人高等數(shù)學(xué)課的教學(xué)中去[J].工程數(shù)學(xué)學(xué)報(bào),2003,(8):1-11.
[2]顏榮芳,張貴倉,李永祥.現(xiàn)代信息技術(shù)支持的數(shù)學(xué)建模創(chuàng)新教育[J].電化教育研究,2009,(3)。
[3]鄭毓信.數(shù)學(xué)方法論的理論與實(shí)踐[M].廣西教育出版社,2009.
[4]姜啟源.數(shù)學(xué)實(shí)驗(yàn)與數(shù)學(xué)建模[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2001,(5):613-617.
[5]姜啟源,謝金星,葉俊.數(shù)學(xué)建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,_平.論數(shù)學(xué)建模教學(xué)活動(dòng)與數(shù)學(xué)素質(zhì)的培養(yǎng)[J].中山大學(xué)學(xué)報(bào),2002,(4):79-80.
[7]付桐林.數(shù)學(xué)建模教學(xué)與創(chuàng)新能力培養(yǎng)[J].教育導(dǎo)刊,2010,(08):89-90.
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第七篇文章以數(shù)學(xué)建模課程為載體,以培養(yǎng)學(xué)生創(chuàng)新能力為核心,從完善課程教學(xué)體系入手,將數(shù)學(xué)建模培養(yǎng)創(chuàng)新能力貫穿在教學(xué)的全過程,探索課程教學(xué)模式對(duì)培養(yǎng)創(chuàng)新人才的新措施。
課程是高校教育教學(xué)活動(dòng)的載體,是學(xué)生掌握理論基礎(chǔ)知識(shí)和提高綜合運(yùn)用知識(shí)能力的重要渠道,學(xué)生創(chuàng)新能力的形成必定要落實(shí)在課程教學(xué)活動(dòng)的全過程中?!皵?shù)學(xué)建?!笔且婚T理論與實(shí)踐緊密結(jié)合的數(shù)學(xué)基礎(chǔ)課程,課程的許多案例來源于實(shí)際生活,其學(xué)習(xí)過程讓學(xué)生體驗(yàn)了數(shù)學(xué)與實(shí)際問題的緊密聯(lián)系。數(shù)學(xué)建模課程從教學(xué)理念及教學(xué)方法上有別于傳統(tǒng)的數(shù)學(xué)課程,它是將培養(yǎng)學(xué)生的創(chuàng)新實(shí)踐能力作為主要任務(wù),利用課程體系完成創(chuàng)新能力的培養(yǎng)。由于課程教學(xué)內(nèi)容系統(tǒng)性差,建模方法涉及多個(gè)數(shù)學(xué)分支,課程結(jié)束后還存在著學(xué)生面對(duì)實(shí)際問題無從下手解決的現(xiàn)象。通過深入研究課程教學(xué)體系,將傳授知識(shí)和實(shí)踐指導(dǎo)有機(jī)結(jié)合,實(shí)施以數(shù)學(xué)建模課程教學(xué)為核心,以競(jìng)賽和創(chuàng)新實(shí)驗(yàn)為平臺(tái)的新課程教學(xué)模式。
一、數(shù)學(xué)建模課程對(duì)培養(yǎng)創(chuàng)新人才的作用
(一)提高實(shí)踐能力
數(shù)學(xué)建模課程案例主要來源于多領(lǐng)域中的實(shí)際問題,它不僅僅是單一的數(shù)學(xué)問題,具有數(shù)學(xué)與多學(xué)科交叉、融合等特點(diǎn)。課程要求學(xué)生掌握一般數(shù)學(xué)基礎(chǔ)知識(shí),同時(shí)要進(jìn)一步學(xué)習(xí)如微分方程、概率統(tǒng)計(jì)、優(yōu)化理論等數(shù)學(xué)知識(shí)。這就需要學(xué)生有自主學(xué)習(xí)“新知識(shí)”的能力,還要具備運(yùn)用綜合知識(shí)解決實(shí)際問題的能力。因此,數(shù)學(xué)建模課程對(duì)于大學(xué)生自學(xué)能力和綜合運(yùn)用知識(shí)能力的培養(yǎng)具有重要作用。
(二)提高創(chuàng)新能力
數(shù)學(xué)建模方法是解決現(xiàn)實(shí)問題的一種量化手段。數(shù)學(xué)建模和傳統(tǒng)數(shù)學(xué)課程相比,是一種創(chuàng)新性活動(dòng)。面對(duì)實(shí)際問題,根據(jù)數(shù)據(jù)和現(xiàn)象分析,用數(shù)學(xué)語言描述建模問題,再進(jìn)行科學(xué)計(jì)算處理,最后反饋到現(xiàn)實(shí)中解釋,這一過程沒有固定的標(biāo)準(zhǔn)模式,可以采用不同方法和思路解決同樣的問題,能鍛煉學(xué)生的想象力、洞察力和創(chuàng)新能力。
(三)提高科學(xué)素質(zhì)
二、基于數(shù)學(xué)建模課程教學(xué)全方位推進(jìn)創(chuàng)新能力培養(yǎng)的實(shí)踐
(一)分解教學(xué)內(nèi)容增強(qiáng)課程的適應(yīng)性
根據(jù)學(xué)生的接受能力及數(shù)學(xué)建模的發(fā)展趨勢(shì),在保持課程理論體系完整性和知識(shí)方法系統(tǒng)性的基礎(chǔ)上,教學(xué)內(nèi)容分解為課堂講授與課后實(shí)踐兩部分。課堂教師講授數(shù)學(xué)建模的基礎(chǔ)理論和基本方法,精講經(jīng)典數(shù)學(xué)模型及建模應(yīng)用案例,啟發(fā)學(xué)生數(shù)學(xué)建模思維,激發(fā)學(xué)生數(shù)學(xué)建模興趣;課后學(xué)生自己動(dòng)手完成課堂內(nèi)容擴(kuò)展、模型運(yùn)算及模型改進(jìn)等,教師答疑解惑。課堂教學(xué)注重?cái)?shù)學(xué)建模知識(shí)的學(xué)習(xí),課后教學(xué)重在知識(shí)的運(yùn)用。隨著實(shí)際問題的復(fù)雜化和多元化,基本的數(shù)學(xué)建模方法及計(jì)算能力滿足不了實(shí)際需求。課程教學(xué)中還增加了圖論、模糊數(shù)學(xué)等方法,計(jì)算機(jī)軟件等初級(jí)知識(shí)。
(二)融入新的教學(xué)方法提高學(xué)生的參與度
1.課堂教學(xué)融入引導(dǎo)式和參與式教學(xué)方法。數(shù)學(xué)建模涉及的知識(shí)很多是學(xué)生學(xué)過的,對(duì)學(xué)生熟悉的方法,教師以引導(dǎo)學(xué)生回顧知識(shí)、增強(qiáng)應(yīng)用意識(shí)為主,借助應(yīng)用案例重點(diǎn)講授問題解決過程中數(shù)學(xué)方法的應(yīng)用,引導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué)建模過程;對(duì)于學(xué)生不熟悉的方法,則要先系統(tǒng)講授方法,再分析講解方法在案例中的應(yīng)用,引導(dǎo)學(xué)生根據(jù)問題尋找方法。此外,為了增強(qiáng)學(xué)生學(xué)習(xí)的積極性和效果,組織1~2次專題研討,要求學(xué)生參與教學(xué)過程,教師須做精心準(zhǔn)備,選擇合適教學(xué)內(nèi)容、設(shè)計(jì)建模過程、引導(dǎo)學(xué)生討論、糾正錯(cuò)誤觀點(diǎn)。
2.課后實(shí)踐實(shí)施討論式和合作式教學(xué)方法。在課后實(shí)踐教學(xué)中,提倡學(xué)生組成學(xué)習(xí)小組,教師參與小組討論共同解決建模問題。學(xué)生以主動(dòng)者的角色積極參與討論、獨(dú)立完成建模工作,并進(jìn)行小組建模報(bào)告,教師給予點(diǎn)評(píng)和糾正。對(duì)那些沒有徹底解決的問題,鼓勵(lì)學(xué)生繼續(xù)討論完善。通過學(xué)生討論、教師點(diǎn)評(píng)、學(xué)生完善這一過程,極大地調(diào)動(dòng)了學(xué)生參與討論、團(tuán)隊(duì)合作的熱情。同時(shí),教師鼓勵(lì)學(xué)生自己尋找感興趣的問題,用數(shù)學(xué)建模去解決問題。
3.課程綜合實(shí)踐推進(jìn)研究式教學(xué)方法。指導(dǎo)學(xué)生在參加數(shù)學(xué)建模競(jìng)賽、學(xué)習(xí)專業(yè)知識(shí)、做畢業(yè)設(shè)計(jì)及參與教師科研等工作中,學(xué)習(xí)深入研究建模解決實(shí)際問題的方法,通過多層次建模綜合實(shí)踐能提高分析問題、選擇方法、實(shí)施建模、問題求解、編程實(shí)踐、計(jì)算模擬的綜合能力,進(jìn)而提高創(chuàng)新能力。
(三)融合多種教學(xué)手段,提高課程的實(shí)效性
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第八篇摘要:
層次分析法是美國學(xué)者于20世紀(jì)70年代提出了以定性與定量相結(jié)合,系統(tǒng)化、層次化分析解決問題的方法,簡稱AHP。傳統(tǒng)的層次分析法算法具有構(gòu)造判斷矩陣不容易、計(jì)算繁多重復(fù)且易出錯(cuò)、一致性調(diào)整比較麻煩等缺點(diǎn)。本文利用微軟的Excel電子表格的強(qiáng)大的函數(shù)運(yùn)算功能,設(shè)置了簡明易懂的計(jì)算表格和步驟,使得判斷矩陣的構(gòu)造、層次單排序和層次總排序的計(jì)算以及一致性檢驗(yàn)和檢驗(yàn)之后對(duì)判斷矩陣的調(diào)整變得十分簡單。
關(guān)鍵詞:
Excel模型層次分析法
一、層次分析法的基本原理
層次分析法是解決定性事件定量化或定性與定量相結(jié)合問題的有力決策分析方法。它主要是將人們的思維過程層次化、,逐層比較其間的相關(guān)因素并逐層檢驗(yàn)比較結(jié)果是否合理,從而為分析決策提供較具說服力的定量依據(jù)。層次分析法不僅可用于確定評(píng)價(jià)指標(biāo)體系的權(quán)重,而且還可用于直接評(píng)價(jià)決策問題,對(duì)研究對(duì)象排序,實(shí)施評(píng)價(jià)排序的評(píng)價(jià)內(nèi)容。
用AHP分析問題大體要經(jīng)過以下七個(gè)步驟:
(1)建立層次結(jié)構(gòu)模型;
首先要將所包含的因素分組,每一組作為一個(gè)層次,按照最高層、若干有關(guān)的中間層和最低層的形式排列起來。對(duì)于決策問題,通常可以將其劃分成層次結(jié)構(gòu)模型,如圖1所示。
其中,最高層:表示解決問題的目的,即應(yīng)用AHP所要達(dá)到的目標(biāo)。
中間層:它表示采用某種措施和政策來實(shí)現(xiàn)預(yù)定目標(biāo)所涉及的中間環(huán)節(jié),一般又分為策略層、約束層、準(zhǔn)則層等。
最低層:表示解決問題的措施或政策(即方案)。
(2)構(gòu)造判斷矩陣;
設(shè)有某層有n個(gè)元素,X={Xx1,x2,x3……xn}要比較它們對(duì)上一層某一準(zhǔn)則(或目標(biāo))的影響程度,確定在該層中相對(duì)于某一準(zhǔn)則所占的比重。(即把n個(gè)因素對(duì)上層某一目標(biāo)的影響程度排序。上述比較是兩兩因素之間進(jìn)行的比較,比較時(shí)取1~9尺度。
用表示第i個(gè)因素相對(duì)于第j個(gè)因素的比較結(jié)果,則
A則稱為成對(duì)比較矩陣
比較尺度:(1~9尺度的含義)
如果數(shù)值為2,4,6,8表示第i個(gè)因素相對(duì)于第j個(gè)因素的影響介于上述兩個(gè)相鄰等級(jí)之間。
倒數(shù):若j因素和i因素比較,得到的判斷值為
(3)用和積法或方根法等求得特征向量W(向量W的分量Wi即為層次單排序)并計(jì)算最大特征根λmax;
(4)計(jì)算一致性指標(biāo)CI、RI、CR并判斷是否具有滿意的一致性。其中RI是
平均隨機(jī)一致性指標(biāo)RI的數(shù)值:
矩陣階數(shù)34567891011
CR=CI/RI,一般地當(dāng)一致性比率CR<時(shí),認(rèn)為A的不一致程度在容許范圍之內(nèi),可用其歸一化特征向量作為權(quán)向量,否則要重新構(gòu)造成對(duì)比較矩陣,對(duì)A加以調(diào)整。
(5)層次總排序,如表1所示。
(6)層次總排序一致性檢驗(yàn),如前所述。
(7)根據(jù)需要進(jìn)行調(diào)整對(duì)于層次單排序結(jié)果和層次總排序結(jié)果,只要符合滿意一致性即隨機(jī)一致性比例CR≤就可以結(jié)束計(jì)算并認(rèn)同排序結(jié)果,否則就要返回調(diào)整不符合一致性的判斷矩陣。
二、層次分析法Excel模型設(shè)計(jì)過程
案例:某人欲到蘇州、杭州、桂林三地旅游,選擇要考慮的因素包括四個(gè)方面:景色、費(fèi)用、居住和飲食,用層次分析法選一個(gè)適合自己情況的旅游點(diǎn)。
⒈根據(jù)題意可以建立層次結(jié)構(gòu)模型如圖1所示。
⒉Excel實(shí)現(xiàn)過程
⑴將準(zhǔn)則層的各因素對(duì)目標(biāo)層的影響兩兩比較結(jié)果輸入Excel表格中,進(jìn)行單排序及一致性檢驗(yàn)如圖2所示。其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各單元格連乘,復(fù)制公式至F7單元格。G4=POWER(F4,1/4),表示將F4單元格的值開4次方,復(fù)制公式至G7單元格G8=SUM(G4:G7),表示求和H4=G4/$G$8,復(fù)制公式至H7單元格I4=B4*H$4+C4*H$5+D4*H$6+E4*H$7,復(fù)制公式至I7單元格J4=I4/H4λmax=AVERAGE(J4:J7)。CI=(J8-4)/(4-1),CR=CI/;,即通過一致性檢驗(yàn)。
⑵按同樣的方法分別計(jì)算出方案層對(duì)景色、費(fèi)用、居住、飲食的判斷矩陣及一致性檢驗(yàn),如圖3所示。
⑶層次總排序,由于蘇州數(shù)值最高,故選擇的旅游地為蘇州,如圖4所示。其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:這是一個(gè)數(shù)組函數(shù)需按ctrl+shift+enter三鍵確定。
三、基于Excel的層次分析法模型設(shè)計(jì)的優(yōu)勢(shì)
(1)層次分析法Excel算法以廣泛使用的辦公軟件Excel作為運(yùn)算平臺(tái),無需掌握深?yuàn)W的計(jì)算機(jī)專業(yè)知識(shí)和術(shù)語,有很好的推廣應(yīng)用基礎(chǔ)。
(2)層次分析法Excel算法的所有計(jì)算結(jié)果和數(shù)據(jù)均保留最高位數(shù)的精確度,可以不在任何環(huán)節(jié)進(jìn)行四舍五入,當(dāng)然也可以根據(jù)需要設(shè)置小數(shù)位,從而最大限度地減少了誤差。
(3)層次分析法Excel算法的計(jì)算步驟設(shè)計(jì)成環(huán)環(huán)相扣、步步跟蹤,步驟設(shè)計(jì)完畢后,可以按需要填充或變更,其余數(shù)據(jù)和結(jié)果均可以在填充或變更判斷矩陣之后立即得出,使得整個(gè)運(yùn)算過程簡捷、輕松。另外,相似的矩陣區(qū)和計(jì)算區(qū)可以通過復(fù)制完成,只需改動(dòng)少量單元格。
(4)層次分析法Excel算法將一致性檢驗(yàn)也同時(shí)計(jì)算出來,決策者和判斷者可以即時(shí)知道自己的判斷是否具有滿意的一致性并可以隨時(shí)和簡單地進(jìn)行調(diào)整直到符合滿意一致性。
(5)如果一致性指標(biāo)不能令人滿意,用本方法可以比較容易地實(shí)現(xiàn)對(duì)判斷矩陣的調(diào)整,可以實(shí)現(xiàn)對(duì)判斷的“微調(diào)”,使得逼近最大程度的“滿意一致性”甚至“完全一致性”而又不必進(jìn)行繁重運(yùn)算成為可能。
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第九篇【摘要】首先闡述數(shù)學(xué)建模內(nèi)涵;其次分析數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的關(guān)系;最后總結(jié)出提高數(shù)學(xué)教學(xué)效果的幾點(diǎn)思考。
【關(guān)鍵詞】數(shù)學(xué)建模;數(shù)學(xué)教學(xué);教學(xué)模式
什么是數(shù)學(xué)建模,為什么要把數(shù)學(xué)建模的思想運(yùn)用到數(shù)學(xué)課堂教學(xué)中去?經(jīng)過反復(fù)閱讀有關(guān)數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的文章,仔細(xì)研修數(shù)十個(gè)高校的數(shù)學(xué)建模精品課程,數(shù)學(xué)建模優(yōu)秀教學(xué)案例等,筆者對(duì)數(shù)學(xué)教學(xué)與數(shù)學(xué)建模進(jìn)行初步探索,形成一定認(rèn)識(shí)。
一、數(shù)學(xué)建模
數(shù)學(xué)建模即運(yùn)用數(shù)學(xué)知識(shí)與數(shù)學(xué)思想,通過對(duì)實(shí)際問題數(shù)學(xué)化,建立數(shù)學(xué)模型,并運(yùn)用計(jì)算機(jī)計(jì)算出結(jié)果,對(duì)實(shí)際問題給出合理解決方案、建議等。系統(tǒng)的談數(shù)學(xué)建模需從以下三個(gè)方面談起。
1.數(shù)學(xué)建模課程。
“數(shù)學(xué)建?!闭n程特色鮮明,以綜合門類為基礎(chǔ),重實(shí)踐,重應(yīng)用。旨在使學(xué)生打好數(shù)學(xué)基礎(chǔ),增強(qiáng)應(yīng)用數(shù)學(xué)意識(shí),提高實(shí)踐能力,建立數(shù)學(xué)模型解決實(shí)際問題。注重培養(yǎng)學(xué)生參與現(xiàn)代科研活動(dòng)主動(dòng)性與參與工程技術(shù)開發(fā)興趣,注重培養(yǎng)學(xué)生創(chuàng)新思維及創(chuàng)新能力等相關(guān)素質(zhì)。
2.數(shù)學(xué)建模競(jìng)賽。
1985年,美國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)發(fā)起的一項(xiàng)大學(xué)生競(jìng)賽活動(dòng)名為“數(shù)學(xué)建模競(jìng)賽”。旨在提高學(xué)生學(xué)習(xí)數(shù)學(xué)主動(dòng)性,提高學(xué)生運(yùn)用計(jì)算機(jī)技術(shù)與數(shù)學(xué)知識(shí)和數(shù)學(xué)思想解決實(shí)際問題綜合能力。學(xué)生參與這項(xiàng)活動(dòng)可以拓寬知識(shí)面,培養(yǎng)自己團(tuán)隊(duì)意識(shí)與創(chuàng)新精神。同時(shí)這項(xiàng)活動(dòng)推動(dòng)了數(shù)學(xué)教師與數(shù)學(xué)教學(xué)專家對(duì)數(shù)學(xué)體系、教學(xué)方式與教學(xué)知識(shí)重新認(rèn)識(shí)。1992年,教育部高教司和中國工業(yè)與數(shù)學(xué)學(xué)會(huì)創(chuàng)辦了“全國大學(xué)生數(shù)學(xué)建模競(jìng)賽”。截止20xx年10月已舉辦有21屆。大力推進(jìn)了我國高校數(shù)學(xué)教學(xué)改革進(jìn)程。
3.數(shù)學(xué)建模與創(chuàng)新教育。
創(chuàng)新教育是現(xiàn)代教育思想的靈魂。數(shù)學(xué)建模競(jìng)賽是實(shí)現(xiàn)數(shù)學(xué)教育創(chuàng)新的重要載體。如20xx年A題,葡萄酒的評(píng)價(jià)中,要求學(xué)生對(duì)葡萄酒原料與釀造、儲(chǔ)存于葡萄酒色澤、口味等有全面認(rèn)識(shí);而20xx年D題,機(jī)器人行走避障問題,要求學(xué)生了解對(duì)機(jī)器人行走特點(diǎn);20xx年B題,乘公交看奧運(yùn),要求學(xué)生了解公交換乘系統(tǒng)。大學(xué)生數(shù)學(xué)建模競(jìng)賽試題涉及不是單一數(shù)學(xué)知識(shí)。因此數(shù)學(xué)教師在數(shù)學(xué)教學(xué)中必須融合其它學(xué)科知識(shí)。同時(shí)學(xué)生參與數(shù)學(xué)建模競(jìng)賽有助于增強(qiáng)其積極思考應(yīng)用數(shù)學(xué)知識(shí)創(chuàng)造性解決實(shí)際問題的意識(shí)。
二、數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的關(guān)系
數(shù)學(xué)建模是數(shù)學(xué)應(yīng)用與實(shí)踐的重要載體;數(shù)學(xué)教學(xué)旨在傳授數(shù)學(xué)知識(shí)與數(shù)學(xué)思想,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的意識(shí)。數(shù)學(xué)建模與數(shù)學(xué)教學(xué)相輔相成,數(shù)學(xué)建模思想與數(shù)學(xué)教學(xué)將有助于提高教學(xué)效果,反之傳統(tǒng)應(yīng)試扼殺了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣與主觀能動(dòng)性;數(shù)學(xué)教學(xué)效果,在數(shù)學(xué)建模過程中體現(xiàn)顯著。
三、數(shù)學(xué)教學(xué)
1.數(shù)學(xué)教學(xué)“教”什么。電子科技大學(xué)的黃廷祝老師說:“數(shù)學(xué)教學(xué),最重要的就是數(shù)學(xué)的精神、思想和方法,而數(shù)學(xué)知識(shí)是第二位的?!币虼藬?shù)學(xué)教師不僅要傳授數(shù)學(xué)知識(shí),更要讓學(xué)生知道數(shù)學(xué)的來龍去脈,領(lǐng)會(huì)數(shù)學(xué)精神實(shí)質(zhì)。
2.如何提高數(shù)學(xué)教學(xué)效果。提高數(shù)學(xué)教師自身素質(zhì)是關(guān)鍵,創(chuàng)新數(shù)學(xué)教學(xué)模式是手段,革新評(píng)價(jià)機(jī)制是保障。
①提高數(shù)學(xué)教師自身素質(zhì)。
數(shù)學(xué)教師自身素質(zhì)是提高數(shù)學(xué)教學(xué)效果的關(guān)鍵。20xx年胡書記在《_關(guān)于加強(qiáng)教師隊(duì)伍建設(shè)的意見》中明確提出,我國教育出了問題,問題關(guān)鍵在教師隊(duì)伍。數(shù)學(xué)學(xué)科特點(diǎn)鮮明。若數(shù)學(xué)教師數(shù)學(xué)素養(yǎng)與綜合能力不強(qiáng),則提高數(shù)學(xué)教學(xué)效果將無從談起。因此數(shù)學(xué)教師需通過如參加培訓(xùn)、學(xué)習(xí)精品課程、同行評(píng)教、與專家探討等途徑努力提高自身素養(yǎng)。
②創(chuàng)新數(shù)學(xué)教學(xué)模式。
數(shù)學(xué)建模綜合實(shí)踐報(bào)告范文第十篇?jiǎng)?chuàng)新人才的培養(yǎng)是新的時(shí)代對(duì)高等教育提出的新要求。培養(yǎng)高質(zhì)量、高層次人才不僅需要傳統(tǒng)意義上的邏輯思維能力、推理演算能力,更需要具備對(duì)所涉及的專業(yè)問題建立數(shù)學(xué)模型,進(jìn)行數(shù)學(xué)實(shí)驗(yàn),利用先進(jìn)的計(jì)算工具、數(shù)學(xué)軟件進(jìn)行數(shù)值求解和做出定量分析的能力。
因此,如何培養(yǎng)學(xué)生的求知欲,如何培養(yǎng)學(xué)生的學(xué)習(xí)積極性,如何培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力已成為高等教育迫切需要解決的問題[1]。
在數(shù)學(xué)教學(xué)中,傳統(tǒng)的數(shù)學(xué)教學(xué)往往注重知識(shí)的傳授、公式的推導(dǎo)、定理的證明以及應(yīng)用能力的培養(yǎng)。盡管這種模式并非一無是處,甚至有時(shí)還相當(dāng)成功,但它不能有效地激發(fā)廣大學(xué)生的求知欲,不能有效地培養(yǎng)學(xué)生的學(xué)習(xí)積極性,不能有效地培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。
而如何培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力,既沒有現(xiàn)成的模式可循,也沒有既定的方法可套用,只能靠廣大教師不斷探索和實(shí)踐。
近年來,國內(nèi)幾乎所有大學(xué)都相繼開設(shè)了數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課,在人才培養(yǎng)和學(xué)科競(jìng)賽上都取得了顯著的成效。數(shù)學(xué)建模是指對(duì)特定的現(xiàn)象,為了某一目的作一些必要的簡化和假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)理論得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),這個(gè)數(shù)學(xué)結(jié)構(gòu)即為數(shù)學(xué)模型,建立這個(gè)數(shù)學(xué)模型的過程即為數(shù)學(xué)建模[2]。
所謂數(shù)學(xué)教學(xué)中的數(shù)學(xué)實(shí)驗(yàn),就是從給定的實(shí)際問題出發(fā),借助計(jì)算機(jī)和數(shù)學(xué)軟件,讓學(xué)生在數(shù)字化的實(shí)驗(yàn)中去學(xué)習(xí)和探索,并通過自己設(shè)計(jì)和動(dòng)手,去體驗(yàn)問題解決的教學(xué)活動(dòng)過程。數(shù)學(xué)實(shí)驗(yàn)是數(shù)學(xué)建模的延伸,是數(shù)學(xué)學(xué)科知識(shí)在計(jì)算機(jī)上的實(shí)現(xiàn),從而使高度抽象的數(shù)學(xué)理論成為生動(dòng)具體的可視性過程。
因此,數(shù)學(xué)實(shí)驗(yàn)就是一個(gè)以學(xué)生為主體,以實(shí)際問題為載體,以計(jì)算機(jī)為媒體,以數(shù)學(xué)軟件為工具,以數(shù)學(xué)建模為過程,以優(yōu)化數(shù)學(xué)模型為目標(biāo)的數(shù)學(xué)教學(xué)活動(dòng)過程[3—7]。
因此,如何把實(shí)際問題與所學(xué)的數(shù)學(xué)知識(shí)聯(lián)系起來;如何根據(jù)實(shí)際問題提煉數(shù)學(xué)模型;建模的方法和技巧;數(shù)學(xué)模型所涉及到的各類算法以及這些算法在相應(yīng)數(shù)學(xué)軟件平臺(tái)上的實(shí)現(xiàn)等問題就成了我們研究的重點(diǎn)?,F(xiàn)結(jié)合教學(xué)實(shí)踐,談?wù)劰P者在數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課的教學(xué)中總結(jié)的幾點(diǎn)看法。
1掌握數(shù)學(xué)語言獨(dú)有的特點(diǎn)和表達(dá)形式
準(zhǔn)確使用數(shù)學(xué)語言模擬現(xiàn)實(shí)模型數(shù)學(xué)語言是表達(dá)數(shù)學(xué)思想的專門語言,它是自然語言發(fā)展到高級(jí)狀態(tài)時(shí)的特殊形式,是人類基于思維、認(rèn)知的特殊需要,按照公有思維、認(rèn)知法則而制造出來的語言及其體系,給人們提供一套完整的并不斷精細(xì)、完善、完美的思維和認(rèn)知程序、規(guī)則、方法。
用數(shù)學(xué)語言進(jìn)行交流和良好的符號(hào)意識(shí)是重要的數(shù)學(xué)素質(zhì)。數(shù)學(xué)建模教學(xué)是以訓(xùn)練學(xué)生的思維為核心,而語言和思維又是密不可分的。能否成功地進(jìn)行數(shù)學(xué)交流,不僅涉及一個(gè)人的數(shù)學(xué)能力,而且也涉及到一個(gè)人的思路是否開闊,頭腦是否開放,是否尊重并且愿意考慮各方面的不同意見,是否樂于接受新的思想感情觀念和新的行為方式。數(shù)學(xué)建模是利用數(shù)學(xué)語言模擬現(xiàn)實(shí)的模型,把現(xiàn)實(shí)模型抽象、簡化為某種數(shù)學(xué)結(jié)構(gòu)是數(shù)學(xué)模型的基本特征。
現(xiàn)實(shí)問題要通過數(shù)學(xué)方法獲得解決,首先必須將其中的非數(shù)學(xué)語言數(shù)學(xué)化,摒棄其中表面的具體敘述,抽象出其中的數(shù)學(xué)本質(zhì),形成數(shù)學(xué)模型。通過分析現(xiàn)實(shí)中的數(shù)學(xué)現(xiàn)象,對(duì)常見的數(shù)學(xué)現(xiàn)象進(jìn)行數(shù)學(xué)語言描述,從而將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題來解決。
2借助數(shù)學(xué)建模教學(xué)使學(xué)生學(xué)會(huì)使用數(shù)學(xué)語言構(gòu)建數(shù)學(xué)模型
根據(jù)現(xiàn)階段普通高校學(xué)生年齡特點(diǎn)和知識(shí)結(jié)構(gòu),我們可以通過數(shù)學(xué)建模對(duì)學(xué)生加強(qiáng)數(shù)學(xué)語言能力的培養(yǎng),讓他們熟練掌握數(shù)學(xué)語言,以期提升學(xué)生的形象思維、抽象思維、邏輯推理和表達(dá)能力,提高學(xué)生的數(shù)學(xué)素質(zhì)和數(shù)學(xué)能力。在數(shù)學(xué)建模教學(xué)過程中,教師要力求做到用詞準(zhǔn)確,敘述精煉,前后連貫,邏輯性強(qiáng)。在問題的重述和分析中揭示數(shù)學(xué)語言的嚴(yán)謹(jǐn)性;在數(shù)學(xué)符號(hào)說明和模型的建立求解中揭示數(shù)學(xué)語言的簡約性,彰顯數(shù)學(xué)語言的邏輯性、精確性和情境性,突出數(shù)學(xué)符號(hào)語言含義的深刻性;在模型的分析和結(jié)果的羅列中,顯示圖表語言的直觀性,展示數(shù)學(xué)語言的確定意義、語義和語法;在模型的應(yīng)用和推廣中,顯示出數(shù)學(xué)符號(hào)語言的推動(dòng)力的獨(dú)特魅力。
而在學(xué)生的書面作業(yè)或論文報(bào)告中,注意培養(yǎng)學(xué)生數(shù)學(xué)語言表達(dá)的規(guī)范性。書面表達(dá)是數(shù)學(xué)語言表達(dá)能力的一種重要形式。通過教師數(shù)學(xué)建模教學(xué)表述規(guī)范的樣板和學(xué)生嚴(yán)格的書面表達(dá)的長期訓(xùn)練來完成。在書面表達(dá)上,主要應(yīng)做到思維清晰、敘述簡潔、書寫規(guī)范。例如在建立模型和求解上,嚴(yán)格要求學(xué)生在模型的假設(shè),符號(hào)說明、模型的建立和求解,圖形的繪制、變量的限制范圍、模型的分析與推廣方面,做到嚴(yán)謹(jǐn)規(guī)范。
對(duì)學(xué)生在利用建模解決問題時(shí)使用符號(hào)語言的不準(zhǔn)確、不規(guī)范、不簡潔等方面要及時(shí)糾正。
3借助數(shù)學(xué)實(shí)驗(yàn)教學(xué),展示高度抽象
的數(shù)學(xué)理論成為具體的可視性過程要培養(yǎng)創(chuàng)新人才,上好數(shù)學(xué)實(shí)驗(yàn)課,首先要有創(chuàng)新型的教師,建立起一支_懂實(shí)驗(yàn)__會(huì)試驗(yàn)__能創(chuàng)新_的教師隊(duì)伍。由于數(shù)學(xué)實(shí)驗(yàn)課理論聯(lián)系實(shí)際,特點(diǎn)鮮明,內(nèi)容新穎,方法特別,所以能夠上好數(shù)學(xué)實(shí)驗(yàn)課,教師就必須具備扎實(shí)的數(shù)學(xué)理論功底,計(jì)算機(jī)軟件應(yīng)用操作能力,良好的科研素質(zhì)與科研能力。
因此,數(shù)學(xué)與統(tǒng)計(jì)學(xué)院就需要選取部分教師,主攻數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)、數(shù)值分析課程。優(yōu)先選派數(shù)學(xué)實(shí)驗(yàn)教師定期出去進(jìn)修深造提高,以便真正形成一支_懂實(shí)驗(yàn)__會(huì)實(shí)驗(yàn)__能創(chuàng)新_的教師隊(duì)伍。實(shí)驗(yàn)課的地位要給予應(yīng)有的重視。我院現(xiàn)存的一個(gè)重要表現(xiàn)就是實(shí)驗(yàn)設(shè)備不足,實(shí)驗(yàn)室開放時(shí)間不夠。為了確保數(shù)學(xué)實(shí)驗(yàn)有物質(zhì)條件上的保證,必須建立數(shù)學(xué)實(shí)驗(yàn)與數(shù)學(xué)建模實(shí)驗(yàn)室。
配備足夠的高性能計(jì)算機(jī),全天候?qū)W(xué)生開放,盡快盡早淘汰陳舊的計(jì)算機(jī)設(shè)備。精心設(shè)計(jì)實(shí)驗(yàn)內(nèi)容,強(qiáng)化典型實(shí)驗(yàn),培養(yǎng)寬厚扎實(shí)理論水平;精選實(shí)驗(yàn)內(nèi)容,加強(qiáng)學(xué)生之間的互動(dòng),培養(yǎng)協(xié)作意識(shí)和團(tuán)隊(duì)精神。在實(shí)驗(yàn)教學(xué)時(shí)數(shù)有限的情況下,依據(jù)培養(yǎng)目標(biāo)和教學(xué)綱要,對(duì)教材中的實(shí)驗(yàn)內(nèi)容進(jìn)行選擇、設(shè)計(jì)。要最大限度地開發(fā)學(xué)生的創(chuàng)造性思維,數(shù)學(xué)實(shí)驗(yàn)在項(xiàng)目設(shè)計(jì)過程中應(yīng)當(dāng)遵循適應(yīng)性、趣味性、靈活性、科學(xué)性、漸進(jìn)性和應(yīng)用性的基本原則。
選擇基礎(chǔ)性試驗(yàn),重點(diǎn)培養(yǎng)寬厚扎實(shí)的理論水平,提高對(duì)數(shù)學(xué)理論與方法的深刻理解。熟練各種數(shù)學(xué)軟件的應(yīng)用與開發(fā),提高計(jì)算機(jī)應(yīng)用能力,增強(qiáng)實(shí)踐應(yīng)用技能;增加綜合性實(shí)驗(yàn)和設(shè)計(jì)性實(shí)驗(yàn),從實(shí)際問題出發(fā),培養(yǎng)學(xué)生分析問題,解決問題的能力,強(qiáng)化創(chuàng)新思維的開發(fā)。
教學(xué)方法上實(shí)行啟發(fā)參與式教學(xué)法:啟發(fā)—參與—誘導(dǎo)—提高。充分發(fā)揮學(xué)生主體作用,以學(xué)生親自動(dòng)腦動(dòng)手為主。
教師先提出問題,對(duì)實(shí)驗(yàn)內(nèi)容,實(shí)驗(yàn)?zāi)繕?biāo),進(jìn)行必要的啟發(fā);然后充分發(fā)揮學(xué)生主體作用,學(xué)生動(dòng)手操作,每個(gè)命令、語句學(xué)生都要在計(jì)算機(jī)上操作得到驗(yàn)證;根據(jù)學(xué)生出現(xiàn)的情況,老師總結(jié)學(xué)生出現(xiàn)的問題,進(jìn)行進(jìn)一步的誘導(dǎo);再讓其理清思路,再次動(dòng)手實(shí)踐,從理論與實(shí)踐的結(jié)合上獲得能力上提高。數(shù)學(xué)實(shí)驗(yàn)是一門強(qiáng)調(diào)實(shí)踐、強(qiáng)調(diào)應(yīng)用的課程。
數(shù)學(xué)實(shí)驗(yàn)將數(shù)學(xué)知識(shí)、數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用三者融為一體,可以使學(xué)生深入理解數(shù)學(xué)的基本概念和理論,掌握數(shù)值計(jì)算方法,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)使用計(jì)算機(jī)解決實(shí)際問題的能力,是一門實(shí)踐性很強(qiáng)的課程。在這一教學(xué)活動(dòng)中,通過數(shù)學(xué)軟件如MAT—LAB、Mathematica、SPSS的教學(xué)和綜合數(shù)學(xué)實(shí)驗(yàn),如碎片拼接、罪犯藏匿地點(diǎn)的查找、光伏電池的連接、野外漂流管理、水資源的有效利用、葡萄酒的分類等,通這些實(shí)際問題最終的數(shù)學(xué)化的解決,將高度抽象的數(shù)學(xué)理論呈現(xiàn)為生動(dòng)具體的可視性結(jié)論,展示數(shù)學(xué)模型與計(jì)算機(jī)技術(shù)相結(jié)合的高度抽象的數(shù)學(xué)理論成為生動(dòng)具體的可視性過程。
4突出學(xué)生的主體作用,循序漸進(jìn)培養(yǎng)學(xué)生學(xué)習(xí)、實(shí)踐到創(chuàng)新
實(shí)踐教學(xué)的目的是要提高學(xué)生應(yīng)用所學(xué)知識(shí)分析、解決實(shí)際問題的綜合能力。
在教學(xué)中,搭建數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)這個(gè)平臺(tái),提示學(xué)生用計(jì)算機(jī)解決經(jīng)過簡化的問題,或自己提出實(shí)驗(yàn)問題,設(shè)計(jì)實(shí)驗(yàn)步驟,觀察實(shí)驗(yàn)結(jié)果,尤其是將龐大繁雜的數(shù)學(xué)計(jì)算交給計(jì)算機(jī)完成,擺脫過去害怕數(shù)學(xué)計(jì)算、畫函數(shù)圖像、解方程等任務(wù),避免學(xué)生一見到龐大的數(shù)學(xué)計(jì)算公式就會(huì)產(chǎn)生畏懼心理,從而喪失信心,讓學(xué)生體會(huì)到在數(shù)學(xué)面前自己由弱者變成了強(qiáng)者,由失敗者變成了勝利者、成功者。
再設(shè)計(jì)讓學(xué)生自己動(dòng)手去解決的各類實(shí)際問題,使學(xué)生通過對(duì)實(shí)際問題的仔細(xì)分析、作出合理假設(shè)、建立模型、求解模型及對(duì)結(jié)果進(jìn)行分析、檢驗(yàn)、總結(jié)等,解決實(shí)際問題,逐步培養(yǎng)學(xué)生熟練使用計(jì)算機(jī)和數(shù)學(xué)軟件的能力以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的意識(shí)和能力。
同時(shí),給學(xué)生提供大量的上機(jī)實(shí)踐的機(jī)會(huì),提高學(xué)生應(yīng)用數(shù)學(xué)軟件的能力。一個(gè)實(shí)際問題構(gòu)成一個(gè)實(shí)驗(yàn)內(nèi)容,通過實(shí)踐環(huán)節(jié)加大訓(xùn)練力度,并要求學(xué)生通過計(jì)算機(jī)編程求解、編寫實(shí)驗(yàn)報(bào)告等形式,達(dá)到提高學(xué)生解決實(shí)際問題綜合能力的目標(biāo)。數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)課程通過實(shí)際問題——方法與分析——范例——軟件——實(shí)驗(yàn)——綜合練習(xí)的教學(xué)過程,以實(shí)際問題為載體,以大學(xué)基本數(shù)學(xué)知識(shí)為基礎(chǔ),采用自學(xué)、講解、討論、試驗(yàn)、文獻(xiàn)閱讀等方式,在教師的逐步指導(dǎo)下,學(xué)習(xí)基本的建模與計(jì)算方法。
通過學(xué)習(xí)查閱文獻(xiàn)資料、用所學(xué)的數(shù)學(xué)知識(shí)和計(jì)算機(jī)技術(shù),借助適當(dāng)?shù)臄?shù)學(xué)軟件,學(xué)會(huì)用數(shù)學(xué)知識(shí)去解決實(shí)際問題的一些基本技巧與方法。通過實(shí)驗(yàn)過程的學(xué)習(xí),加深學(xué)生對(duì)數(shù)學(xué)的了解,使同學(xué)們應(yīng)用數(shù)學(xué)方法的能力和發(fā)散性思維的能力得到進(jìn)一步的培養(yǎng)。實(shí)踐已證明,數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)課這門課深受學(xué)生歡迎,它的教學(xué)無論對(duì)培養(yǎng)創(chuàng)新型人才還是應(yīng)用型人才都能發(fā)揮其他課程無法替代的作用。
5具體的教學(xué)策略和途徑
數(shù)學(xué)建模課程和數(shù)學(xué)實(shí)驗(yàn)課程同時(shí)開設(shè),在課程教學(xué)中,要盡可能做到如下幾個(gè)方面:
1)注重背景的闡述
讓學(xué)生了解問題背景,才能知道解決實(shí)際問題需要哪些知識(shí),才能做出貼近實(shí)際的假設(shè),而這恰恰是建立一個(gè)能夠解決實(shí)際問題的數(shù)學(xué)模型的前提。再者,問題背景越是清晰,越能夠體現(xiàn)問題的重要性,這樣才能激發(fā)學(xué)生解決實(shí)際問題的興趣。
2)注重模型建立與求解過程中的數(shù)學(xué)語言的使用
在做好實(shí)際問題的簡化后,使用精煉的數(shù)學(xué)符號(hào)表示現(xiàn)實(shí)含義是數(shù)學(xué)語言使用的彰顯。基于必要的背景知識(shí),建立符合現(xiàn)實(shí)的數(shù)學(xué)模型,通過多個(gè)方面對(duì)模型進(jìn)行修正,向?qū)W生展示不同的條件相對(duì)應(yīng)的數(shù)學(xué)模型對(duì)于現(xiàn)實(shí)問題的解決。在模型的求解上,嚴(yán)格要求學(xué)生在模型的假設(shè),符號(hào)說明、圖形的繪制、變量的限制范圍、模型的分析與推廣方面,做到嚴(yán)謹(jǐn)規(guī)范。對(duì)學(xué)生在利用建模解決問題時(shí)使用符號(hào)語言的不準(zhǔn)確、不規(guī)范、不簡潔等方面及時(shí)糾正。
3)注重經(jīng)典算法的數(shù)學(xué)軟件的實(shí)現(xiàn)和改進(jìn)
由于實(shí)際問題的特殊性導(dǎo)致數(shù)學(xué)模型沒有固定的模式,這就要求既要熟練掌握一般數(shù)學(xué)軟件和算法的實(shí)現(xiàn),又要善于改進(jìn)和總結(jié),使得現(xiàn)有的算法和程序能夠通過修正來解決實(shí)際問題,這對(duì)于學(xué)生能力的培養(yǎng)不可或缺。只有不斷的學(xué)習(xí)和總結(jié),才有數(shù)學(xué)素養(yǎng)的培養(yǎng)和創(chuàng)新能力的提高。
參考文獻(xiàn):
[1]葉其孝。把數(shù)學(xué)建模、數(shù)學(xué)實(shí)驗(yàn)的思想和方法融人高等數(shù)學(xué)課的教學(xué)中去[J]。工程數(shù)學(xué)學(xué)報(bào),2003,(8):1—11。
[2]顏榮芳,張貴倉,李永祥?,F(xiàn)代信息技術(shù)支持的數(shù)學(xué)建模創(chuàng)新教育[J]。電化教育研究,2009,(3)。
[3]鄭毓信。數(shù)學(xué)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融科技下知識(shí)產(chǎn)權(quán)融資的實(shí)踐與探索
- 個(gè)人住房抵押貸款合同
- 中外雙方進(jìn)出口合同范本
- 二手房全款交易合同范本
- 個(gè)人租賃倉儲(chǔ)空間的合同范本
- 中外合作研發(fā)合同范本(人工智能)
- 專業(yè)技術(shù)人才培養(yǎng)合作合同
- 產(chǎn)業(yè)投資合作協(xié)議合同模板
- 主要農(nóng)作物新品種推廣合同示范文本
- 個(gè)人與合作方倉儲(chǔ)運(yùn)輸合同例文
- 2024年山東省高中學(xué)業(yè)水平合格考生物試卷試題(含答案詳解)
- 2025年中考英語復(fù)習(xí)熱點(diǎn)話題作文范文
- 小學(xué)數(shù)學(xué)教學(xué)工作交流數(shù)學(xué)教學(xué)中的體會(huì)總結(jié)經(jīng)驗(yàn)交流會(huì)課件
- 2024年美國智能馬桶和馬桶蓋市場(chǎng)現(xiàn)狀及上下游分析報(bào)告
- 中國成人暴發(fā)性心肌炎診斷和治療指南(2023版)解讀
- 復(fù)產(chǎn)復(fù)工六個(gè)一
- 招商引資項(xiàng)目落地工作方案
- 湘教版高中數(shù)學(xué)必修二知識(shí)點(diǎn)清單
- 商業(yè)綜合體投資計(jì)劃書
- 2024妊娠期糖尿病指南課件
- 《鋼鐵是怎樣煉成的》練習(xí)題(含答案)
評(píng)論
0/150
提交評(píng)論