湖北省武漢市江岸區(qū)七一華源中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮卷含解析_第1頁
湖北省武漢市江岸區(qū)七一華源中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮卷含解析_第2頁
湖北省武漢市江岸區(qū)七一華源中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮卷含解析_第3頁
湖北省武漢市江岸區(qū)七一華源中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮卷含解析_第4頁
湖北省武漢市江岸區(qū)七一華源中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北省武漢市江岸區(qū)七一華源中學(xué)2023-2024學(xué)年中考數(shù)學(xué)最后沖刺濃縮精華卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.在-,,0,-2這四個(gè)數(shù)中,最小的數(shù)是()A. B. C.0 D.-22.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形3.如圖是由5個(gè)相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.4.如圖是測量一物體體積的過程:步驟一:將180mL的水裝進(jìn)一個(gè)容量為300mL的杯子中;步驟二:將三個(gè)相同的玻璃球放入水中,結(jié)果水沒有滿;步驟三:再將一個(gè)同樣的玻璃球放入水中,結(jié)果水滿溢出.根據(jù)以上過程,推測一個(gè)玻璃球的體積在下列哪一范圍內(nèi)?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下5.2019年4月份,某市市區(qū)一周空氣質(zhì)量報(bào)告中某項(xiàng)污染指數(shù)的數(shù)據(jù)是:31,35,31,34,30,32,31,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.32,31 B.31,32 C.31,31 D.32,356.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時(shí)間x(單位:小時(shí))之間的函數(shù)關(guān)系.則下列說法正確的是()A.兩車同時(shí)到達(dá)乙地B.轎車在行駛過程中進(jìn)行了提速C.貨車出發(fā)3小時(shí)后,轎車追上貨車D.兩車在前80千米的速度相等7.cos45°的值是(

)A.

B.

C.

D.18.體育測試中,小進(jìn)和小俊進(jìn)行800米跑測試,小進(jìn)的速度是小俊的1.25倍,小進(jìn)比小俊少用了40秒,設(shè)小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.9.姜老師給出一個(gè)函數(shù)表達(dá)式,甲、乙、丙三位同學(xué)分別正確指出了這個(gè)函數(shù)的一個(gè)性質(zhì).甲:函數(shù)圖像經(jīng)過第一象限;乙:函數(shù)圖像經(jīng)過第三象限;丙:在每一個(gè)象限內(nèi),y值隨x值的增大而減?。鶕?jù)他們的描述,姜老師給出的這個(gè)函數(shù)表達(dá)式可能是()A. B. C. D.10.如果一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形的邊數(shù)是()A.8 B.9 C.10 D.11二、填空題(共7小題,每小題3分,滿分21分)11.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動點(diǎn),則△CQR的周長的最小值為_________.12.某廠家以A、B兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價(jià)分別為袋中兩種原料的成本價(jià)之和.若甲產(chǎn)品每袋售價(jià)72元,則利潤率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過100袋,會計(jì)在核算成本的時(shí)候把A原料和B原料的單價(jià)看反了,后面發(fā)現(xiàn)如果不看反,那么實(shí)際成本比核算時(shí)的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時(shí)實(shí)際成本最多為_____元.13.在某一時(shí)刻,測得一根高為2m的竹竿的影長為1m,同時(shí)測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.14.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點(diǎn)C、D與點(diǎn)A、B不重合),M是CD的中點(diǎn),過點(diǎn)C作CP⊥AB于點(diǎn)P,若CD=3,AB=8,PM=l,則l的最大值是15.如圖,在矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上一個(gè)動點(diǎn),把△ADE沿直線AE折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線上時(shí),則DE的長為_____.16.已知三個(gè)數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.17.在一個(gè)不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球?qū)嶒?yàn):將球攪勻后從中隨機(jī)摸出一個(gè),記下顏色,再放回袋中,不斷重復(fù).下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是_____.摸球的次數(shù)n1001502005008001000摸到白球的次數(shù)m5896116295484601摸到白球的頻率m/n0.580.640.580.590.6050.601三、解答題(共7小題,滿分69分)18.(10分)為了弘揚(yáng)我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進(jìn)行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個(gè)獎(jiǎng)項(xiàng):“祖沖之獎(jiǎng)”、“劉徽獎(jiǎng)”、“趙爽獎(jiǎng)”和“楊輝獎(jiǎng)”,根據(jù)獲獎(jiǎng)情況繪制成如圖1和圖2所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,并得到了獲“祖沖之獎(jiǎng)”的學(xué)生成績統(tǒng)計(jì)表:“祖沖之獎(jiǎng)”的學(xué)生成績統(tǒng)計(jì)表:分?jǐn)?shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎(jiǎng)”的人數(shù)是_____,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)獲得“祖沖之獎(jiǎng)”的學(xué)生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個(gè)不透明的盒子里有完全相同的三個(gè)小球,球上分別標(biāo)有數(shù)字“﹣2”,“﹣1”和“2”,隨機(jī)摸出一個(gè)小球,把小球上的數(shù)字記為x放回后再隨機(jī)摸出一個(gè)小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點(diǎn)(x,y).用列表法或樹狀圖法求這個(gè)點(diǎn)在第二象限的概率.19.(5分)如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn).當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長20.(8分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點(diǎn)A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對稱軸上有一動點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點(diǎn),那么,在平移后的拋物線的對稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說明理由.21.(10分)“校園手機(jī)”現(xiàn)象越來越受到社會的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:(1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖1;(2)求圖2中表示家長“贊成”的圓心角的度數(shù);(3)已知某地區(qū)共6500名家長,估計(jì)其中反對中學(xué)生帶手機(jī)的大約有多少名家長?22.(10分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,連接AD,把△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)D落在點(diǎn)E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是,位置關(guān)系是.探究證明:在(1)的條件下,若點(diǎn)D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請?jiān)趫D②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點(diǎn)D作DF⊥AD交CE于點(diǎn)F,請直接寫出線段CF長度的最大值.23.(12分)(1)計(jì)算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.24.(14分)為了加強(qiáng)學(xué)生的安全意識,某校組織了學(xué)生參加安全知識競賽.從中抽取了部分學(xué)生成績(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)頻數(shù)分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補(bǔ)全頻數(shù)分布直方圖;(4)若成績在80分以上優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績優(yōu)秀學(xué)生有名.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對值大的反而小比較即可.【詳解】在﹣,,0,﹣1這四個(gè)數(shù)中,﹣1<﹣<0<,故最小的數(shù)為:﹣1.故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的大小比較,解答本題的關(guān)鍵是熟練掌握實(shí)數(shù)的大小比較方法,特別是兩個(gè)負(fù)數(shù)的大小比較.2、D【解析】分析:根據(jù)菱形,正方形,平行四邊形,矩形的判定定理,進(jìn)行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯(cuò)誤;

B、四條邊相等的四邊形是菱形,故錯(cuò)誤;

C、對角線相互平分的四邊形是平行四邊形,故錯(cuò)誤;

D、對角線相等且相互平分的四邊形是矩形,正確;

故選D.點(diǎn)睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關(guān)鍵是熟記四邊形的判定定理.3、A【解析】

根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個(gè)小正方形,第二層左邊有1個(gè)小正方形.故選A.【點(diǎn)睛】本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.4、C【解析】分析:本題可設(shè)玻璃球的體積為x,再根據(jù)題意列出不等式組求得解集得出答案即可.詳解:設(shè)玻璃球的體積為x,則有解得30<x<1.故一顆玻璃球的體積在30cm3以上,1cm3以下.故選C.點(diǎn)睛:此題考查一元一次不等式組的運(yùn)用,解此類題目常常要根據(jù)題意列出不等式組,再化簡計(jì)算得出x的取值范圍.5、C【解析】分析:找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè).解答:解:從小到大排列此數(shù)據(jù)為:30、1、1、1、32、34、35,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.6、B【解析】

①根據(jù)函數(shù)的圖象即可直接得出結(jié)論;②求得直線OA和DC的解析式,求得交點(diǎn)坐標(biāo)即可;③由圖象無法求得B的橫坐標(biāo);④分別進(jìn)行運(yùn)算即可得出結(jié)論.【詳解】由題意和圖可得,轎車先到達(dá)乙地,故選項(xiàng)A錯(cuò)誤,轎車在行駛過程中進(jìn)行了提速,故選項(xiàng)B正確,貨車的速度是:300÷5=60千米/時(shí),轎車在BC段對應(yīng)的速度是:千米/時(shí),故選項(xiàng)D錯(cuò)誤,設(shè)貨車對應(yīng)的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應(yīng)的函數(shù)解析式為y=60x,設(shè)CD段轎車對應(yīng)的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應(yīng)的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時(shí)后,轎車追上貨車,故選項(xiàng)C錯(cuò)誤,故選:B.【點(diǎn)睛】此題考查一次函數(shù)的應(yīng)用,解題的關(guān)鍵在于利用題中信息列出函數(shù)解析式7、C【解析】

本題主要是特殊角的三角函數(shù)值的問題,求解本題的關(guān)鍵是熟悉特殊角的三角函數(shù)值.【詳解】cos45°=.故選:C.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值.8、C【解析】

先分別表示出小進(jìn)和小俊跑800米的時(shí)間,再根據(jù)小進(jìn)比小俊少用了40秒列出方程即可.【詳解】小進(jìn)跑800米用的時(shí)間為秒,小俊跑800米用的時(shí)間為秒,∵小進(jìn)比小俊少用了40秒,方程是,故選C.【點(diǎn)睛】本題考查了列分式方程解應(yīng)用題,能找出題目中的相等關(guān)系式是解此題的關(guān)鍵.9、B【解析】y=3x的圖象經(jīng)過一三象限過原點(diǎn)的直線,y隨x的增大而增大,故選項(xiàng)A錯(cuò)誤;y=的圖象在一、三象限,在每個(gè)象限內(nèi)y隨x的增大而減小,故選項(xiàng)B正確;y=?的圖象在二、四象限,故選項(xiàng)C錯(cuò)誤;y=x2的圖象是頂點(diǎn)在原點(diǎn)開口向上的拋物線,在一、二象限,故選項(xiàng)D錯(cuò)誤;故選B.10、A【解析】分析:根據(jù)多邊形的內(nèi)角和公式及外角的特征計(jì)算.詳解:多邊形的外角和是360°,根據(jù)題意得:

110°?(n-2)=3×360°

解得n=1.

故選A.點(diǎn)睛:本題主要考查了多邊形內(nèi)角和公式及外角的特征.求多邊形的邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

作C關(guān)于AB的對稱點(diǎn)G,關(guān)于AD的對稱點(diǎn)F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關(guān)于AB的對稱點(diǎn)G,關(guān)于AD的對稱點(diǎn)F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點(diǎn)共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.【點(diǎn)睛】本題考查了軸對稱問題,關(guān)鍵是根據(jù)軸對稱的性質(zhì)和兩點(diǎn)之間線段最短解答.12、5750【解析】

根據(jù)題意設(shè)甲產(chǎn)品的成本價(jià)格為b元,求出b,可知A原料與B原料的成本和40元,然后設(shè)A種原料成本價(jià)格x元,B種原料成本價(jià)格(40﹣x)元,生產(chǎn)甲產(chǎn)品m袋,乙產(chǎn)品n袋,列出方程組得到xn=20n﹣250,最后設(shè)生產(chǎn)甲乙產(chǎn)品的實(shí)際成本為W元,即可解答【詳解】∵甲產(chǎn)品每袋售價(jià)72元,則利潤率為20%.設(shè)甲產(chǎn)品的成本價(jià)格為b元,∴=20%,∴b=60,∴甲產(chǎn)品的成本價(jià)格60元,∴1.5kgA原料與1.5kgB原料的成本和60元,∴A原料與B原料的成本和40元,設(shè)A種原料成本價(jià)格x元,B種原料成本價(jià)格(40﹣x)元,生產(chǎn)甲產(chǎn)品m袋,乙產(chǎn)品n袋,根據(jù)題意得:,∴xn=20n﹣250,設(shè)生產(chǎn)甲乙產(chǎn)品的實(shí)際成本為W元,則有W=60m+40n+xn,∴W=60m+40n+20n﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生產(chǎn)甲乙產(chǎn)品的實(shí)際成本最多為5750元,故答案為5750;【點(diǎn)睛】此題考查不等式和二元一次方程的解,解題關(guān)鍵在于求出甲產(chǎn)品的成本價(jià)格13、1【解析】分析:根據(jù)同時(shí)同地的物高與影長成正比列式計(jì)算即可得解.詳解:設(shè)這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點(diǎn)睛:同時(shí)同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.14、4【解析】

當(dāng)CD∥AB時(shí),PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當(dāng)CD∥AB時(shí),PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M(jìn)為CD中點(diǎn),OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點(diǎn)睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.15、或10【解析】

試題分析:根據(jù)題意,可分為E點(diǎn)在DC上和E在DC的延長線上,兩種情況求解即可:如圖①,當(dāng)點(diǎn)E在DC上時(shí),點(diǎn)D的對應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=2,設(shè)FE=x,則FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如圖②,當(dāng),所以FQ=點(diǎn)E在DG的延長線上時(shí),點(diǎn)D的對應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線QP上,易求FP=3,所以FQ=8,設(shè)DE=x,則FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,綜上所述,DE=或10.16、±1【解析】

先由平均數(shù)的計(jì)算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進(jìn)行計(jì)算,即可求出x的值.【詳解】解:這三個(gè)數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點(diǎn)睛】本題考查方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.17、0.1【解析】

根據(jù)表格中的數(shù)據(jù),隨著實(shí)驗(yàn)次數(shù)的增大,頻率逐漸穩(wěn)定在0.1左右,即為摸出白球的概率.【詳解】解:觀察表格得:通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn)其中摸到白球的頻率穩(wěn)定在0.1左右,則P白球=0.1.故答案為0.1.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,在同樣條件下,大量反復(fù)試驗(yàn)時(shí),隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.三、解答題(共7小題,滿分69分)18、(1)劉徽獎(jiǎng)的人數(shù)為人,補(bǔ)全統(tǒng)計(jì)圖見解析;(2)獲得“祖沖之獎(jiǎng)”的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分;(3)(點(diǎn)在第二象限).【解析】

(1)先根據(jù)祖沖之獎(jiǎng)的人數(shù)及其百分比求得總?cè)藬?shù),再根據(jù)扇形圖求出趙爽獎(jiǎng)、楊輝獎(jiǎng)的人數(shù),繼而根據(jù)各獎(jiǎng)項(xiàng)的人數(shù)之和等于總?cè)藬?shù)求得劉徽獎(jiǎng)的人數(shù),據(jù)此可得;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解可得;(3)列表得出所有等可能結(jié)果,再找到這個(gè)點(diǎn)在第二象限的結(jié)果,根據(jù)概率公式求解可得.【詳解】(1)∵獲獎(jiǎng)的學(xué)生人數(shù)為20÷10%=200人,∴趙爽獎(jiǎng)的人數(shù)為200×24%=48人,楊輝獎(jiǎng)的人數(shù)為200×46%=92人,則劉徽獎(jiǎng)的人數(shù)為200﹣(20+48+92)=40,補(bǔ)全統(tǒng)計(jì)圖如下:故答案為40;(2)獲得“祖沖之獎(jiǎng)”的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分.故答案為90、90;(3)列表法:∵第二象限的點(diǎn)有(﹣2,2)和(﹣1,2),∴P(點(diǎn)在第二象限).【點(diǎn)睛】本題考查了用列表法或畫樹狀圖法求概率、頻數(shù)分布直方圖以及利用統(tǒng)計(jì)圖獲取信息的能力.利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問題,也考查列表法或畫樹狀圖法求概率.19、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點(diǎn)N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點(diǎn)F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點(diǎn)D作DM⊥BC于M,過點(diǎn)A作AN⊥CE交EC的延長線于N,

∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點(diǎn)D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時(shí)S△DCF1=S△BDE;

過點(diǎn)D作DF1⊥BD,

∵∠ABC=20°,F(xiàn)1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點(diǎn)D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點(diǎn)F1也是所求的點(diǎn),

∵∠ABC=20°,點(diǎn)D是角平分線上一點(diǎn),DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長為3或2.20、(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】

(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對稱軸,從而得出點(diǎn)C關(guān)于對稱軸的對稱點(diǎn)C′坐標(biāo),連接BC′,與對稱軸交點(diǎn)即為所求點(diǎn)P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點(diǎn)D的坐標(biāo),由點(diǎn)O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點(diǎn)M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,∴平移后拋物線的二次項(xiàng)系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點(diǎn)C(0,﹣3),則點(diǎn)C關(guān)于直線x=﹣1的對稱點(diǎn)C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點(diǎn)即為所求點(diǎn)P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點(diǎn)M只能在點(diǎn)D上方,∵∠BOD=∠ODM=135°,∴當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形△BOD相似,①若,則,解得DM=2,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,3);②若,則,解得DM=1,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,2);綜上,點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關(guān)鍵.21、(1)答案見解析(2)36°(3)4550名【解析】試題分析:(1)根據(jù)認(rèn)為無所謂的家長是80人,占20%,據(jù)此即可求得總?cè)藬?shù);(2)利用360乘以對應(yīng)的比例即可求解;(3)利用總?cè)藬?shù)6500乘以對應(yīng)的比例即可求解.(1)這次調(diào)查的家長人數(shù)為80÷20%=400人,反對人數(shù)是:400-40-80=280人,;(2)360×=36°;(3)反對中學(xué)生帶手機(jī)的大約有6500×=4550(名).考點(diǎn):1.條形統(tǒng)計(jì)圖;2.用樣本估計(jì)總體;3.扇形統(tǒng)計(jì)圖.22、(1)CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)類似.(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,設(shè)DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數(shù)即可求得CF的最大值.詳解:(1)①∵AB=AC,∠BAC=90°,∴線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案為CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由如下:如圖,∵線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,∴AE=AD,∠DAE=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論