湖北省孝感市云夢縣2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第1頁
湖北省孝感市云夢縣2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第2頁
湖北省孝感市云夢縣2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第3頁
湖北省孝感市云夢縣2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第4頁
湖北省孝感市云夢縣2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省孝感市云夢縣2023-2024學年中考數(shù)學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.把不等式組的解集表示在數(shù)軸上,下列選項正確的是()A. B.C. D.2.化簡:-,結(jié)果正確的是()A.1 B. C. D.3.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.84.cos60°的值等于()A.1 B. C. D.5.如圖所示,點E是正方形ABCD內(nèi)一點,把△BEC繞點C旋轉(zhuǎn)至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°6.在平面直角坐標系中,函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限7.如果關(guān)于的不等式組的整數(shù)解僅有、,那么適合這個不等式組的整數(shù)、組成的有序數(shù)對共有()A.個 B.個 C.個 D.個8.甲、乙兩名同學在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結(jié)果的實驗可能是()A.擲一枚正六面體的骰子,出現(xiàn)1點的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率9.的值是A. B. C. D.10.化簡的結(jié)果為()A.﹣1 B.1 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.化簡:12+31312.若不等式組x<4x<m的解集是x<4,則m13.如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn.當n≥2時,Sn﹣Sn﹣1=▲.14.下列說法正確的是_____.(請直接填寫序號)①“若a>b,則>.”是真命題.②六邊形的內(nèi)角和是其外角和的2倍.③函數(shù)y=的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.15.如圖,AB是⊙O的切線,B為切點,AC經(jīng)過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.16.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設(shè)P點的運動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.17.某商品每件標價為150元,若按標價打8折后,再降價10元銷售,仍獲利10%,則該商品每件的進價為_________元.三、解答題(共7小題,滿分69分)18.(10分)如圖,海中有一個小島A,該島四周11海里范圍內(nèi)有暗礁.有一貨輪在海面上由西向正東方向航行,到達B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達小島南偏西45°方向上的點C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)19.(5分)甲、乙兩名隊員的10次射擊訓練,成績分別被制成下列兩個統(tǒng)計圖.并整理分析數(shù)據(jù)如下表:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲771.2乙78(1)求,,的值;分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?20.(8分)一位運動員推鉛球,鉛球運行時離地面的高度(米)是關(guān)于運行時間(秒)的二次函數(shù).已知鉛球剛出手時離地面的高度為米;鉛球出手后,經(jīng)過4秒到達離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標系.(Ⅰ)為了求這個二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個點的坐標.根據(jù)題意可知,該二次函數(shù)圖象上三個點的坐標分別是____________________________;(Ⅱ)求這個二次函數(shù)的解析式和自變量的取值范圍.21.(10分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關(guān)系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.22.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?23.(12分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.24.(14分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表.

請根據(jù)所給信息,解答以下問題:

表中___;____請計算扇形統(tǒng)計圖中B組對應扇形的圓心角的度數(shù);

已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

求得不等式組的解集為x<﹣1,所以C是正確的.【詳解】解:不等式組的解集為x<﹣1.故選C.【點睛】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.2、B【解析】

先將分母進行通分,化為(x+y)(x-y)的形式,分子乘上相應的分式,進行化簡.【詳解】【點睛】本題考查的是分式的混合運算,解題的關(guān)鍵就是熟練掌握運算規(guī)則.3、B【解析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【詳解】解:由題意得,當點P為劣弧AB的中點時,PQ最小,

連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【點睛】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.4、A【解析】

根據(jù)特殊角的三角函數(shù)值直接得出結(jié)果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數(shù)值是解題的關(guān)鍵.5、C【解析】

根據(jù)正方形的每一個角都是直角可得∠BCD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉(zhuǎn)至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點睛】本題目是一道考查旋轉(zhuǎn)的性質(zhì)問題——每對對應點到旋轉(zhuǎn)中心的連線的夾角都等于旋轉(zhuǎn)角度,每對對應邊相等,故為等腰直角三角形.6、A【解析】【分析】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于k和b.當k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于x的系數(shù)和常數(shù)項.7、D【解析】

求出不等式組的解集,根據(jù)已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數(shù)解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時,b=9、10、11;當a=4時,b=9、10、11;所以適合這個不等式組的整數(shù)a、b組成的有序數(shù)對(a,b)共有6個,故選:D.【點睛】本題考查了解一元一次不等式組,不等式組的整數(shù)解,有序?qū)崝?shù)對的應用,解此題的根據(jù)是求出a、b的值.8、C【解析】解:A.擲一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B.擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤.故選C.9、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:,故選:D.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.10、B【解析】

先把分式進行通分,把異分母分式化為同分母分式,再把分子相加,即可求出答案.【詳解】解:.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】試題分析:先進行二次根式的化簡,然后合并,可得原式=23+3=33.12、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.13、【解析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當AB=n時,△AME的面積為,當AB=n-1時,△AME的面積為.∴當n≥2時,14、②④⑤【解析】

根據(jù)不等式的性質(zhì)可確定①的對錯,根據(jù)多邊形的內(nèi)外角和可確定②的對錯,根據(jù)函數(shù)自變量的取值范圍可確定③的對錯,根據(jù)三角形中位線的性質(zhì)可確定④的對錯,根據(jù)正方形的性質(zhì)可確定⑤的對錯.【詳解】①“若a>b,當c<0時,則<,故①是假命題;②六邊形的內(nèi)角和是其外角和的2倍,根據(jù)②真命題;③函數(shù)y=的自變量的取值范圍是x≥﹣1且x≠0,故③是假命題;④三角形的中位線平行于第三邊,并且等于第三邊的一半,故④是真命題;⑤正方形既是軸對稱圖形,又是中心對稱圖形,故⑤是真命題;故答案為②④⑤【點睛】本題考查了不等式的性質(zhì)、多邊形的內(nèi)外角和、函數(shù)自變量的取值范圍、三角形中位線的性質(zhì)、正方形的性質(zhì),解答本題的關(guān)鍵是熟練掌握各知識點.15、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.16、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據(jù)題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.17、1【解析】試題分析:設(shè)該商品每件的進價為x元,則150×80%-10-x=x×10%,解得x=1.即該商品每件的進價為1元.故答案為1.點睛:此題主要考查了一元一次方程的應用,解決本題的關(guān)鍵是得到商品售價的等量關(guān)系.三、解答題(共7小題,滿分69分)18、不會有觸礁的危險,理由見解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可設(shè)AH=CH=x,根據(jù)可得關(guān)于x的方程,解之可得.詳解:過點A作AH⊥BC,垂足為點H.由題意,得∠BAH=60°,∠CAH=45°,BC=1.設(shè)AH=x,則CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴貨輪繼續(xù)向正東方向航行,不會有觸礁的危險.點睛:本題考查了解直角三角形的應用﹣方向角問題,解一般三角形的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.19、(1)a=7,b=7.5,c=4.2;(2)見解析.【解析】

(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析.【詳解】(1)甲的平均成績a==7(環(huán)),∵乙射擊的成績從小到大重新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(shù)b==7.5(環(huán)),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定;綜合以上各因素,若選派一名隊員參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統(tǒng)計圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運用.熟練掌握平均數(shù)的計算,理解方差的概念,能夠根據(jù)計算的數(shù)據(jù)進行綜合分析.20、(0,),(4,3)【解析】試題分析:(Ⅰ)根據(jù)“剛出手時離地面高度為米、經(jīng)過4秒到達離地面3米的高度和經(jīng)過1秒落到地面”可得三點坐標;(Ⅱ)利用待定系數(shù)法求解可得.試題解析:解:(Ⅰ)由題意知,該二次函數(shù)圖象上的三個點的坐標分別是(0,)、(4,3)、(1,0).故答案為:(0,)、(4,3)、(1,0).(Ⅱ)設(shè)這個二次函數(shù)的解析式為y=ax2+bx+c,將(Ⅰ)三點坐標代入,得:,解得:,所以所求拋物線解析式為y=﹣x2+x+,因為鉛球從運動員拋出到落地所經(jīng)過的時間為1秒,所以自變量的取值范圍為0≤x≤1.21、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關(guān)系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關(guān)系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設(shè)拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯(lián)立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數(shù)綜合題;2.壓軸題;3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論