![浙江杭州上城區(qū)七校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第2頁](http://file4.renrendoc.com/view2/M02/16/37/wKhkFmae-KKAfA5fAAIB6w193_E9422.jpg)
![浙江杭州上城區(qū)七校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第3頁](http://file4.renrendoc.com/view2/M02/16/37/wKhkFmae-KKAfA5fAAIB6w193_E9423.jpg)
![浙江杭州上城區(qū)七校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第4頁](http://file4.renrendoc.com/view2/M02/16/37/wKhkFmae-KKAfA5fAAIB6w193_E9424.jpg)
![浙江杭州上城區(qū)七校聯(lián)考2022年九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題含解析_第5頁](http://file4.renrendoc.com/view2/M02/16/37/wKhkFmae-KKAfA5fAAIB6w193_E9425.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.兩個相似三角形的面積比是9:16,則這兩個三角形的相似比是()A.9︰16 B.3︰4 C.9︰4 D.3︰162.拋物線y=ax2+bx+c(a≠1)如圖所示,下列結(jié)論:①abc<1;②點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2;③b2>(a+c)2;④2a﹣b<1.正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個3.某市為解決部分市民冬季集中取暖問題需鋪設(shè)一條長3000米的管道,為盡量減少施工對交通造成的影響,實施施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程=15,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補為()A.每天比原計劃多鋪設(shè)10米,結(jié)果延期15天才完成B.每天比原計劃少鋪設(shè)10米,結(jié)果延期15天才完成C.每天比原計劃多鋪設(shè)10米,結(jié)果提前15天才完成D.每天比原計劃少鋪設(shè)10米,結(jié)果提前15天才完成4.如圖,已知點A(m,m+3),點B(n,n﹣3)是反比例函數(shù)y=(k>0)在第一象限的圖象上的兩點,連接AB.將直線AB向下平移3個單位得到直線l,在直線l上任取一點C,則△ABC的面積為()A. B.6 C. D.95.在Rt△ABC中,AB=6,BC=8,則這個三角形的內(nèi)切圓的半徑是()A.5 B.2 C.5或2 D.2或-16.在中,,已知和,則下列關(guān)系式中正確的是()A. B. C. D.7.用配方法解方程配方正確的是()A. B. C. D.8.如圖所示,圖中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.下列四個結(jié)論,①過三點可以作一個圓;②圓內(nèi)接四邊形對角相等;③平分弦的直徑垂直于弦;④相等的圓周角所對的弧也相等;不正確的是()A.②③ B.①③④ C.①②④ D.①②③④10.如圖,⊙O的半徑為6,點A、B、C在⊙O上,且∠BCA=45°,則點O到弦AB的距離為()A.3 B.6 C.3 D.611.如圖,平面直角坐標(biāo)系中,⊙P經(jīng)過三點A(8,0),O(0,0),B(0,6),點D是⊙P上的一動點.當(dāng)點D到弦OB的距離最大時,tan∠BOD的值是()A.2 B.3 C.4 D.512.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“?!?、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④二、填空題(每題4分,共24分)13.如圖,以點P為圓心的圓弧與x軸交于A,B兩點,點P的坐標(biāo)為(4,2),點A的坐標(biāo)為(2,0),則點B的坐標(biāo)為______.14.如果拋物線與軸的一個交點的坐標(biāo)是,那么與軸的另一個交點的坐標(biāo)是___________.15.如圖,在矩形中,點為的中點,交于點,連接,下列結(jié)論:①;②;③;④若,則.其中正確的結(jié)論是______________.(填寫所有正確結(jié)論的序號)16.兩地的實際距離是,在地圖上眾得這兩地的距離為,則這幅地圖的比例尺是___________.17.小亮在上午8時,9時30分,10時,12時四次到室外的陽光下觀察向日葵的頭莖隨太陽轉(zhuǎn)動的情況,無意之中,他發(fā)現(xiàn)這四個時刻向日葵影子的長度各不相同,那么影子最長的時刻為________.18.若點、在二次函數(shù)的圖象上,則的值為________.三、解答題(共78分)19.(8分)年月日商用套餐正式上線.某移動營業(yè)廳為了吸引用戶,設(shè)計了,兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖),轉(zhuǎn)盤被等分為個扇形,分別為紅色和黃色;轉(zhuǎn)盤被等分為個扇形,分別為黃色、紅色、藍(lán)色,指針固定不動.營業(yè)廳規(guī)定,每位新用戶可分別轉(zhuǎn)動兩個轉(zhuǎn)盤各一次,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域顏色相同,則該用戶可免費領(lǐng)取通用流量(若指針停在分割線上,則視其指向分割線右側(cè)的扇形).小王辦理業(yè)務(wù)獲得一次轉(zhuǎn)轉(zhuǎn)盤的機會,求他能免費領(lǐng)取通用流量的概率.AB20.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點C(0,﹣3),點P是直線BC下方拋物線上的任意一點。(1)求這個二次函數(shù)y=x2+bx+c的解析式。(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點P的坐標(biāo)。21.(8分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.22.(10分)如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象相交于A,B兩點,與x軸,y軸分別交于C,D兩點,tan∠DCO=,過點A作AE⊥x軸于點E,若點C是OE的中點,且點A的橫坐標(biāo)為﹣1.,(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)連接ED,求△ADE的面積.23.(10分)如圖所示,請畫出這個幾何體的三視圖.24.(10分)如圖1,在和中,頂點是它們的公共頂點,,.(特例感悟)(1)當(dāng)頂點與頂點重合時(如圖1),與相交于點,與相交于點,求證:四邊形是菱形;(探索論證)(2)如圖2,當(dāng)時,四邊形是什么特殊四邊形?試證明你的結(jié)論;(拓展應(yīng)用)(3)試探究:當(dāng)?shù)扔诙嗌俣葧r,以點為頂點的四邊形是矩形?請給予證明.25.(12分)某校在基地參加社會活動中,帶隊老師考問學(xué)生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留有一個寬為3米的出入口,如圖所示.如何設(shè)計才能使園地的面積最大?下面是兩位同學(xué)爭議的情境:小軍:把它圍成一個正方形,這樣的面積一定最大.小英:不對啦!面積最大的不是正方形.請根據(jù)上面信息,解決問題:(1)設(shè)米().①米(用含的代數(shù)式表示);②的取值范圍是;(2)請你判斷誰的說法正確,為什么?26.如圖,某中學(xué)一幢教學(xué)樓的頂部豎有一塊寫有“校訓(xùn)”的宣傳牌,米,王老師用測傾器在點測得點的仰角為,再向教學(xué)樓前進(jìn)9米到達(dá)點,測得點的仰角為,若測傾器的高度米,不考慮其它因素,求教學(xué)樓的高度.(結(jié)果保留根號)
參考答案一、選擇題(每題4分,共48分)1、B【解析】試題分析:根據(jù)相似三角形中,面積比等于相似比的平方,即可得到結(jié)果.因為面積比是9:16,則相似比是3︰4,故選B.考點:本題主要考查了相似三角形的性質(zhì)點評:解答本題的關(guān)鍵是掌握相似三角形面積的比等于相似比的平方2、B【分析】利用拋物線開口方向得到a>1,利用拋物線的對稱軸在y軸的左側(cè)得到b>1,利用拋物線與y軸的交點在x軸下方得到c<1,則可對①進(jìn)行判斷;通過對稱軸的位置,比較點(-3,y1)和點(1,y2)到對稱軸的距離的大小可對②進(jìn)行判斷;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1時,a+b+c>1;x=-1時,a-b+c<1,則可對③進(jìn)行判斷;利用和不等式的性質(zhì)可對④進(jìn)行判斷.【詳解】∵拋物線開口向上,∴a>1,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,∴b>1,∵拋物線與y軸的交點在x軸下方,∴c<1,∴abc<1,所以①正確;∵拋物線的對稱軸為直線x=﹣,而﹣1<﹣<1,∴點(﹣3,y1)到對稱軸的距離比點(1,y2)到對稱軸的距離大,∴y1>y2,所以②正確;∵x=1時,y>1,即a+b+c>1,x=﹣1時,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正確;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④錯誤.故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)a決定拋物線的開口方向和大小.當(dāng)a>1時,拋物線向上開口;當(dāng)a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時,對稱軸在y軸左;當(dāng)a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(1,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>1時,拋物線與x軸有2個交點;△=b2-4ac=1時,拋物線與x軸有1個交點;△=b2-4ac<1時,拋物線與x軸沒有交點.3、C【解析】題中方程表示原計劃每天鋪設(shè)管道米,即實際每天比原計劃多鋪設(shè)米,結(jié)果提前天完成,選.4、A【分析】由點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,可得到m、n之間的關(guān)系,過點A、B分別作x軸、y軸的平行線,構(gòu)造直角三角形,可求出直角三角形的直角邊的長,由平移可得直角三角形的直角頂點在直線l上,進(jìn)而將問題轉(zhuǎn)化為求△ADB的面積.【詳解】解:∵點A(m,m+3),點B(n,n﹣3)在反比例函數(shù)y=(k>0)第一象限的圖象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,過點A、B分別作x軸、y軸的平行線相交于點D,∴BD=xB﹣xA=n﹣m=3,AD=y(tǒng)A﹣yB=m+3﹣(n﹣3)=m﹣n+6=3,又∵直線l是由直線AB向下平移3個單位得到的,∴平移后點A與點D重合,因此,點D在直線l上,∴S△ACB=S△ADB=AD?BD=,故選:A.【點睛】本題主要考察反比例函數(shù)與一次函數(shù)的交點問題,解題關(guān)鍵是熟練掌握計算法則.5、D【解析】分AC為斜邊和BC為斜邊兩種情況討論.根據(jù)切線定理得過切點的半徑垂直于三角形各邊,利用面積法列式求半徑長.【詳解】第一情況:當(dāng)AC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情況:當(dāng)BC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故選:D.【點睛】本題考查了三角形內(nèi)切圓半徑的求法及勾股定理,依據(jù)圓的切線性質(zhì)是解答此題的關(guān)鍵.等面積法是求高度等線段長的常用手段.6、B【分析】根據(jù)三角函數(shù)的定義即可作出判斷.【詳解】∵在Rt△ABC中,∠C=90°,∠C的對邊為c,∠A的對邊為a,∴sinA=,∴a=c?sinA,.故選:B.【點睛】考查了銳角三角函數(shù)的定義,正確理解直角三角形邊角之間的關(guān)系.在直角三角形中,如果已知一邊及其中的一個銳角,就可以表示出另外的邊.7、A【分析】本題可以用配方法解一元二次方程,首先將常數(shù)項移到等號的右側(cè),將等號左右兩邊同時加上一次項系數(shù)一半的平方,即可將等號左邊的代數(shù)式寫成完全平方形式.【詳解】解:,,∴,.故選:.【點睛】此題考查配方法的一般步驟:①把常數(shù)項移到等號的右邊;②把二次項的系數(shù)化為1;③等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).8、C【解析】根據(jù)軸對稱圖形和中心對稱圖形的定義(軸對稱圖形是沿某條直線對折,對折的兩部分能夠完全重合的圖形,中心對稱圖形是繞著某一點旋轉(zhuǎn)后能與自身重合的圖形)判斷即可.【詳解】解:A選項是中心對稱圖形但不是軸對稱圖形,A不符合題意;B選項是軸對稱圖形但不是中心對稱圖形,B不符合題意;C選項既是軸對稱圖形又是中心對稱圖形,C符合題意;D選項既不是軸對稱圖形又不是中心對稱圖形.故選:C.【點睛】本題考查了軸對稱圖形與中心對稱圖形,熟練掌握軸對稱圖形與中心對稱圖形的判斷方法是解題的關(guān)鍵.9、D【分析】根據(jù)確定圓的條件、圓的內(nèi)接四邊形的性質(zhì)、垂徑定理及圓心角、弧、弦的關(guān)系定理逐一判斷即可得答案.【詳解】過不在同一條直線上的三點可以作一個圓,故①錯誤,圓的內(nèi)接四邊形對角互補,故②錯誤,平分弦(非直徑)的直徑垂直于弦,并且平分弦所對的弧,故③錯誤,在同圓或等圓中,相等的圓周角所對的弧也相等,故④錯誤,綜上所述:不正確的結(jié)論有①②③④,故選:D.【點睛】本題考查確定圓的條件、圓的內(nèi)接四邊形的性質(zhì)、垂徑定理及圓心角、弧、弦的關(guān)系定理,熟練掌握相關(guān)性質(zhì)及定理是解題關(guān)鍵.10、C【分析】連接OA、OB,作OD⊥AB于點D,則△OAB是等腰直角三角形,得到ODAB,即可得出結(jié)論.【詳解】連接OA、OB,作OD⊥AB于點D.∵△OAB中,OB=OA=6,∠AOB=2∠ACB=90°,∴AB.又∵OD⊥AB于點D,∴ODAB=.故選C.【點睛】本題考查了圓周角定理,得到△OAB是等腰直角三角形是解答本題的關(guān)鍵.11、B【解析】如圖,連接AB,過點P作PE⊥BO,并延長EP交⊙P于點D,求出⊙P的半徑,進(jìn)而結(jié)合勾股定理得出答案.【詳解】解:如圖,連接AB,過點P作PE⊥BO,并延長EP交⊙P于點D,此時點D到弦OB的距離最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,則⊙P的半徑為5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3,故選B.【點睛】本題考查了圓周角定理以及勾股定理、解直角三角形等知識,正確作出輔助線是解題關(guān)鍵.12、D【分析】根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進(jìn)行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關(guān)鍵二、填空題(每題4分,共24分)13、(6,0)【詳解】解:過點P作PM⊥AB于M,則M的坐標(biāo)是(4,0)∴MB=MA=4-2=2,∴點B的坐標(biāo)為(6,0)14、【分析】根據(jù)拋物線y=ax2+2ax+c,可以得到該拋物線的對稱軸,然后根據(jù)二次函數(shù)圖象具有對稱性和拋物線y=ax2+2ax+c與x軸的一個交點的坐標(biāo)是(1,0),可以得到該拋物線與x軸的另一個交點坐標(biāo).【詳解】∵拋物線y=ax2+2ax+c=a(x+1)2-a+c,
∴該拋物線的對稱軸是直線x=-1,
∵拋物線y=ax2+2ax+c與x軸的一個交點的坐標(biāo)是(1,0),
∴該拋物線與x軸的另一個交點的坐標(biāo)是(-3,0),
故答案為:(-3,0).【點睛】此題考查二次函數(shù)的圖形及其性質(zhì),解題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.15、①③④【分析】根據(jù)矩形的性質(zhì)和余角的性質(zhì)可判斷①;延長CB,F(xiàn)E交于點G,根據(jù)ASA可證明△AEF≌△BEG,可得AF=BG,EF=EG,進(jìn)一步即可求得AF、BC與CF的關(guān)系,S△CEF與S△EAF+S△CBE的關(guān)系,進(jìn)而可判斷②與③;由,結(jié)合已知和銳角三角函數(shù)的知識可得,進(jìn)一步即可根據(jù)AAS證明結(jié)論④;問題即得解決.【詳解】解:∵,,∵四邊形ABCD是矩形,∴∠B=90°,∴,,所以①正確;延長CB,F(xiàn)E交于點G,如圖,在△AEF和△BEG中,∵∠FAE=∠GBE=90°,AE=BE,∠AEF=∠BEG,∴△AEF≌△BEG(ASA),∴AF=BG,EF=EG,∴S△CEG=S△CEF,∵CE⊥EG,∴CG=CF,∴AF+BC=BG+BC=CG=CF,所以②錯誤;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正確;若,則,,,在和中,∵∠CEF=∠D=90°,,CF=CF,≌,所以④正確.綜上所述,正確的結(jié)論是①③④.故答案為:①③④.【點睛】本題考查了矩形的性質(zhì)、余角的性質(zhì)、全等三角形的判定和性質(zhì)以及銳角三角函數(shù)等知識,綜合性較強,屬于??碱}型,正確添加輔助線、熟練掌握上述基本知識是解題的關(guān)鍵.16、1:1【分析】圖上距離和實際距離已知,依據(jù)“比例尺=圖上距離:實際距離”即可求得地圖的比例尺.【詳解】解:因為,所以這幅地圖的比例尺是.故答案為:1:1.【點睛】本題考查比例尺.比例尺=圖上距離:實際距離,在計算比例尺時一定要將實際距離與地圖上的距離的單位化統(tǒng)一.17、上午8時【解析】解:根據(jù)地理知識,北半球不同時刻太陽高度角不同影長也不同,規(guī)律是由長變短,再變長.故答案為上午8時.點睛:根據(jù)北半球不同時刻物體在太陽光下的影長是由長變短,再變長來解答此題.18、-1【分析】利用拋物線的對稱性得到點A和點B為拋物線上的對稱點,根據(jù)二次函數(shù)的性質(zhì)得到拋物線的對稱軸為直線x=?2,從而得到m?(?2)=?2?(?3),然后解方程即可.【詳解】∵點A(?3,n)、B(m,n),∴點A和點B為拋物線上的對稱點,∵二次函數(shù)的圖象的對稱軸為直線x=?2,∴m?(?2)=?2?(?3),∴m=?1.故答案為:?1.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征:二次函數(shù)圖象上點的坐標(biāo)滿足其解析式.也考查了二次函數(shù)的性質(zhì).三、解答題(共78分)19、他能免費領(lǐng)取100G100G通用流量的概率為.【分析】列舉出所有情況,讓兩個指針?biāo)竻^(qū)域的顏色相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】共有種等可能情況發(fā)生,其中指針?biāo)竻^(qū)域顏色相同的情況有種,為(黃,黃),(紅,紅),∴【點睛】本題考查的是用列表法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)二次函數(shù)的解析式為;(2)P()時,四邊形POP′C為菱形.【分析】(1)將點B、C的坐標(biāo)代入解方程組即可得到函數(shù)解析式;(2)根據(jù)四邊形POP′C為菱形,得到,且與OC互相垂直平分,可知點P的縱坐標(biāo)為,將點P的縱坐標(biāo)代入解析式即可得到橫坐標(biāo),由此得到答案.【詳解】(1)將點B(3,0)、C(0,﹣3)的坐標(biāo)代入y=x2+bx+c,得,∴∴二次函數(shù)的解析式為;(2)如圖,令中x=0,得y=-3,∴C(0,-3)∵四邊形POP′C為菱形,∴,且與OC互相垂直平分,∴點P的縱坐標(biāo)為,當(dāng)y=時,,得:,∵點P是直線BC下方拋物線上的任意一點,∴P()時,四邊形POP′C為菱形.【點睛】此題考查二次函數(shù)的待定系數(shù)法求解析式、菱形的性質(zhì),(2)根據(jù)菱形的對角線互相垂直平分得到點P的縱坐標(biāo),由此解答問題.21、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根據(jù)一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常數(shù)項移項,再把方程兩邊同時加上一次項系數(shù)一半的平方,即可得完全平方式,直接開平方即可得答案.【詳解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【點睛】本題考查解一元二次方程,一元二次方程的常用解法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當(dāng)?shù)姆椒ㄊ墙忸}關(guān)鍵.22、(1)y=﹣x﹣3,y=﹣;(2)S△ADE=2.【分析】(1)根據(jù)題意求得OE=1,OC=2,Rt△COD中,tan∠DCO=,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),運用待定系數(shù)法即可求得反比例函數(shù)與一次函數(shù)的解析式;
(2)求得兩個三角形的面積,然后根據(jù)S△ADE=S△ACE+S△DCE即可求得.【詳解】(1)∵AE⊥x軸于點E,點C是OE的中點,且點A的橫坐標(biāo)為﹣1,∴OE=1,OC=2,∵Rt△COD中,tan∠DCO=,∴OD=3,∴A(﹣1,3),∴D(0,﹣3),C(﹣2,0),∵直線y=ax+b(a≠0)與x軸、y軸分別交于C、D兩點,∴,解得,∴一次函數(shù)的解析式為y=﹣x﹣3,把點A的坐標(biāo)(﹣1,3)代入,可得3=,解得k=﹣12,∴反比例函數(shù)解析式為y=﹣;(2)S△ADE=S△ACE+S△DCE=EC?AE+EC?OD=×2×3+=2.23、見解析.【解析】根據(jù)三視圖的畫法解答即可.【詳解】解:如圖所示:【點睛】本題考查幾何體的三視圖畫法.主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形;注意看到的用實線表示,看不到的用虛線表示.24、(1)見解析;(2)
當(dāng)∠GBC=30°時,四邊形GCFD是正方形.證明見解析;(3)當(dāng)∠GBC=120°時,以點,,,為頂點的四邊形CGFD是矩形.證明見解析.【分析】(1)先證明四邊形是平行四邊形,再通過證明得出,從而證明四邊形是菱形;(2)證法一:如圖,連接交于,在上取一點,使得,通過證明,,,從而證明當(dāng)∠GBC=30°時,四邊形GCFD是正方形;證法二:如圖,過點G作GH⊥BC于H,通過證明OD=OC=OG=OF,GF=CD,從而證明當(dāng)∠GBC=30°時,四邊形GCFD是正方形;(3)
當(dāng)∠GBC=120°時,點E與點A重合,通過證明,CD=GF,,從而證明四邊形是矩形.【詳解】(1),,四邊形是平行四邊形,在和中,,,四邊形是菱形.(2)
當(dāng)∠GBC=30°時,四邊形GCFD是正方形.證法一:如圖,連接交于,在上取一點,使得,,,,,,,.,,,,,,,,設(shè),則,,
在Rt△BGK中,,解得,
,,,,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京勞務(wù)派遣合同范本
- 買賣借款合同范例
- 2025年背槍帶行業(yè)深度研究分析報告
- 兼職快遞合同范本
- 安達(dá)市水果種植收購合同范本
- 2025年度生物制藥研發(fā)股份認(rèn)購合同
- 醫(yī)療物資采購合同范本
- 企業(yè)勞動專用合同
- 分期借貸合同范例
- 借用店鋪合同范本
- 【課件】DNA片段的擴增及電泳鑒定課件高二下學(xué)期生物人教版(2019)選擇性必修3
- GB/T 6417.1-2005金屬熔化焊接頭缺欠分類及說明
- 科創(chuàng)板知識測評20個題目的答案
- 2023年湖北成人學(xué)位英語考試真題及答案
- 走好群眾路線-做好群眾工作(黃相懷)課件
- NY∕T 4001-2021 高效氯氟氰菊酯微囊懸浮劑
- 《社會主義市場經(jīng)濟理論(第三版)》第七章社會主義市場經(jīng)濟規(guī)則論
- 漢聲數(shù)學(xué)圖畫電子版4冊含媽媽手冊文本不加密可版本-29.統(tǒng)計2500g早教
- 中國監(jiān)察制度史
- 搬家公司簡介(15個范本)
- 典范英語-2備課材料2a課件
評論
0/150
提交評論