2023屆四川省會理縣第一中學數(shù)學高三上期末達標測試試題含解析_第1頁
2023屆四川省會理縣第一中學數(shù)學高三上期末達標測試試題含解析_第2頁
2023屆四川省會理縣第一中學數(shù)學高三上期末達標測試試題含解析_第3頁
2023屆四川省會理縣第一中學數(shù)學高三上期末達標測試試題含解析_第4頁
2023屆四川省會理縣第一中學數(shù)學高三上期末達標測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.22.已知定義在上的可導函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.3.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要4.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或55.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.46.函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調遞增,在區(qū)間上單調遞減,則實數(shù)的值為()A. B. C.2 D.7.定義運算,則函數(shù)的圖象是().A. B.C. D.8.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.9.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.10.已知,,,,則()A. B. C. D.11.集合,則()A. B. C. D.12.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數(shù)滿足約束條件,設的最大值與最小值分別為,則_____.14.展開式中項系數(shù)為160,則的值為______.15.記Sk=1k+2k+3k+……+nk,當k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.16.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.18.(12分)正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.19.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大??;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.20.(12分)已知函數(shù).(1)若函數(shù)在上單調遞增,求實數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.21.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.22.(10分)已知函數(shù),.(1)討論的單調性;(2)當時,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.2、A【解析】

構造函數(shù),根據(jù)已知條件判斷出的單調性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構造函數(shù)法解不等式,考查利用導數(shù)研究函數(shù)的單調性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.3、B【解析】

根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.4、B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎題.5、B【解析】

對函數(shù)化簡可得,進而結合三角函數(shù)的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.6、C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調遞增,在區(qū)間上單調遞減,可得時,取得最大值,即,,,當時,解得,故選C.點睛:本題主要考查了三角函數(shù)圖象的平移變換和性質的靈活運用,屬于基礎題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調遞增,在區(qū)間上單調遞減可得時,取得最大值,求解可得實數(shù)的值.7、A【解析】

由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.8、C【解析】

根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.9、A【解析】

畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.10、D【解析】

令,求,利用導數(shù)判斷函數(shù)為單調遞增,從而可得,設,利用導數(shù)證出為單調遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.11、D【解析】

利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.12、A【解析】

根據(jù)指數(shù)型函數(shù)所過的定點,確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數(shù)型函數(shù)的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.14、-2【解析】

表示該二項式的展開式的第r+1項,令其指數(shù)為3,再代回原表達式構建方程求得答案.【詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:【點睛】本題考查由二項式指定項的系數(shù)求參數(shù),屬于簡單題.15、【解析】

觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【點睛】本題考查了歸納推理,意在考查學生的推理能力.16、①②③【解析】

由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經檢驗符合題意,三角形的周長.(實際上可解得,符合三邊關系).【點睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導公式,考查正弦定理,余弦定理在解三角形中的綜合應用,考查了學生的運算能力,考查了轉化思想,屬于中檔題.18、(1)(2)見解析【解析】

(1)因為數(shù)列的前項和滿足:,所以當時,,即解得或,因為數(shù)列都是正項,所以,因為,所以,解得或,因為數(shù)列都是正項,所以,當時,有,所以,解得,當時,,符合所以數(shù)列的通項公式,;(2)因為,所以,所以數(shù)列的前項和為:,當時,有,所以,所以對于任意,數(shù)列的前項和.19、(1)B(2)【解析】

(1)由已知結合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用,屬于中檔題.20、(1);(2)見解析.【解析】

(1)求出導數(shù),問題轉化為在上恒成立,利用導數(shù)求出的最小值即可求解;(2)分別設切點橫坐標為,利用導數(shù)的幾何意義寫出切線方程,問題轉化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導數(shù)及零點存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調遞增等價于在上恒成立.令,得,所以在單調遞減,在單調遞增,則.因為,則在上恒成立等價于在上恒成立;又,所以,即.(2)設的切點橫坐標為,則切線方程為……①設的切點橫坐標為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論