版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第32講空間點(diǎn)、直線、平面間的位置關(guān)系(精講)題型目錄一覽①共面、共線、共點(diǎn)問(wèn)題的證明②異面直線③平面的基本性質(zhì)④等角定理一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、四個(gè)公理公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi).注意:(1)此公理是判定直線在平面內(nèi)的依據(jù);(2)此公理是判定點(diǎn)在面內(nèi)的方法公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.注意:(1)此公理是確定一個(gè)平面的依據(jù);(2)此公理是判定若干點(diǎn)共面的依據(jù)推論①:經(jīng)過(guò)一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面;注意:(1)此推論是判定若干條直線共面的依據(jù)(2)此推論是判定若干平面重合的依據(jù)(3)此推論是判定幾何圖形是平面圖形的依據(jù)推論②:經(jīng)過(guò)兩條相交直線,有且只有一個(gè)平面;推論③:經(jīng)過(guò)兩條平行直線,有且只有一個(gè)平面;公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.注意:(1)此公理是判定兩個(gè)平面相交的依據(jù)(2)此公理是判定若干點(diǎn)在兩個(gè)相交平面的交線上的依據(jù)(比如證明三點(diǎn)共線、三線共點(diǎn))(3)此推論是判定幾何圖形是平面圖形的依據(jù)公理4:平行于同一條直線的兩條直線互相平行.二、直線與直線的位置關(guān)系位置關(guān)系相交(共面)平行(共面)異面圖形符號(hào)SKIPIF1<0a∥bSKIPIF1<0公共點(diǎn)個(gè)數(shù)100特征兩條相交直線確定一個(gè)平面兩條平行直線確定一個(gè)平面兩條異面直線不同在如何一個(gè)平面內(nèi)三、直線與平面的位置關(guān)系位置關(guān)系包含(面內(nèi)線)相交(面外線)平行(面外線)圖形符號(hào)SKIPIF1<0SKIPIF1<0SKIPIF1<0∥SKIPIF1<0公共點(diǎn)個(gè)數(shù)無(wú)數(shù)個(gè)10四、平面與平面的位置關(guān)系位置關(guān)系平行相交(但不垂直)垂直圖形SKIPIF1<0SKIPIF1<0符號(hào)SKIPIF1<0∥SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0公共點(diǎn)個(gè)數(shù)0無(wú)數(shù)個(gè)公共點(diǎn)且都在唯一的一條直線上無(wú)數(shù)個(gè)公共點(diǎn)且都在唯一的一條直線上【常用結(jié)論】等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).二、題型分類精講二、題型分類精講題型一共面、共線、共點(diǎn)問(wèn)題的證明策略方法共面、共線、共點(diǎn)問(wèn)題的證明【典例1】如圖,在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面;(2)對(duì)角線SKIPIF1<0與平面SKIPIF1<0交于點(diǎn)SKIPIF1<0,SKIPIF1<0交于點(diǎn)SKIPIF1<0,求證:點(diǎn)SKIPIF1<0共線;(3)證明:SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三線共點(diǎn).【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.【分析】(1)證明SKIPIF1<0,即可說(shuō)明SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面.(2)先證明點(diǎn)SKIPIF1<0面SKIPIF1<0和SKIPIF1<0面SKIPIF1<0,即點(diǎn)SKIPIF1<0在面SKIPIF1<0與面SKIPIF1<0的交線上在證明面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0,即點(diǎn)SKIPIF1<0SKIPIF1<0,即可得到答案.(3)延長(zhǎng)SKIPIF1<0交于SKIPIF1<0,由于面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0,則SKIPIF1<0在交線SKIPIF1<0上.【詳解】(1)連接SKIPIF1<0SKIPIF1<0在長(zhǎng)方體SKIPIF1<0中SKIPIF1<0SKIPIF1<0SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面(2)SKIPIF1<0SKIPIF1<0確定一個(gè)平面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0對(duì)角線SKIPIF1<0與平面SKIPIF1<0交于點(diǎn)SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0在面SKIPIF1<0與面SKIPIF1<0的交線上SKIPIF1<0SKIPIF1<0面SKIPIF1<0且SKIPIF1<0面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0即點(diǎn)SKIPIF1<0共線.(3)延長(zhǎng)SKIPIF1<0交于SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0面SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三線共點(diǎn).【題型訓(xùn)練】一、單選題1.(2023·全國(guó)·高三專題練習(xí))已知空間四個(gè)點(diǎn),則“這四個(gè)點(diǎn)中有三點(diǎn)在同一直線上”是“這四個(gè)點(diǎn)在同一平面內(nèi)”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【分析】一條直線和直線外一點(diǎn)確定一個(gè)平面,由此可驗(yàn)證充分性成立;“這四個(gè)點(diǎn)在同一平面內(nèi)”時(shí),可能有“兩點(diǎn)分別在兩條相交或平行直線上”,從而必要性不成立.【詳解】“這四個(gè)點(diǎn)中有三點(diǎn)在同一直線上”,則第四點(diǎn)不在共線三點(diǎn)所在的直線上,因?yàn)橐粭l直線和直線外一點(diǎn)確定一個(gè)平面,一定能推出“這四點(diǎn)在同一個(gè)平面內(nèi)”,從而充分性成立;“這四個(gè)點(diǎn)在同一平面內(nèi)”時(shí),可能有“兩點(diǎn)分別在兩條相交或平行直線上”,不一定有三點(diǎn)在同一直線上,從而必要性不成立,所以“這四個(gè)點(diǎn)中有三點(diǎn)在同一直線上”是“這四個(gè)點(diǎn)在同一平面內(nèi)”的充分不必要條件.故選:A.2.(2023·全國(guó)·高三專題練習(xí))正方體ABCD--A1B1C1D1中,E,F(xiàn)分別是線段BC,CD1的中點(diǎn),則直線A1B與直線EF的位置關(guān)系是(
)A.相交 B.異面C.平行 D.垂直【答案】A【分析】連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)F,易得SKIPIF1<0是平行四邊形,根據(jù)平面的基本性質(zhì)即可判斷直線SKIPIF1<0與直線SKIPIF1<0的位置關(guān)系.【詳解】如圖所示,連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)F,由題意,易得四邊形SKIPIF1<0是平行四邊形,在平行四邊形SKIPIF1<0中,E,F(xiàn)分別是線段SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0共面,則直線SKIPIF1<0與直線SKIPIF1<0相交.故選:A.3.(2023·高三課時(shí)練習(xí))在空間四邊形ABCD的各邊AB、BC、CD、DA上分別取E、F、G、H四點(diǎn),若EF∩GH=P,則點(diǎn)P(
)A.一定在直線BD上 B.一定在直線AC上C.既在直線AC上也在直線BD上 D.既不在直線AC上也不在直線BD上【答案】B【分析】由題意可得P∈平面ABC,P∈平面ACD,又平面ABC∩平面ACD=AC,則P∈AC,可得答案.【詳解】如圖,∵EF?平面ABC,GH?平面ACD,EF∩GH=P,∴P∈平面ABC,P∈平面ACD,又平面ABC∩平面ACD=AC,∴P∈AC,即點(diǎn)P一定在直線AC上.故選:B.4.(2023·吉林·長(zhǎng)春吉大附中實(shí)驗(yàn)學(xué)校校考模擬預(yù)測(cè))在長(zhǎng)方體SKIPIF1<0中,直線SKIPIF1<0與平面SKIPIF1<0的交點(diǎn)為SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),則下列結(jié)論錯(cuò)誤的是(
)A.SKIPIF1<0三點(diǎn)共線 B.SKIPIF1<0四點(diǎn)異不共面C.SKIPIF1<0四點(diǎn)共面 D.SKIPIF1<0四點(diǎn)共面【答案】C【分析】由長(zhǎng)方體性質(zhì)易知SKIPIF1<0四點(diǎn)共面且SKIPIF1<0是異面直線,再根據(jù)SKIPIF1<0與SKIPIF1<0、面SKIPIF1<0、面SKIPIF1<0的位置關(guān)系知SKIPIF1<0在面SKIPIF1<0與面SKIPIF1<0的交線上,同理判斷SKIPIF1<0,即可判斷各選項(xiàng)的正誤.【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0四點(diǎn)共面.因?yàn)镾KIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,則點(diǎn)SKIPIF1<0在平面SKIPIF1<0與平面SKIPIF1<0的交線上,同理,SKIPIF1<0也在平面SKIPIF1<0與平面SKIPIF1<0的交線上,所以SKIPIF1<0三點(diǎn)共線;從而SKIPIF1<0四點(diǎn)共面,都在平面SKIPIF1<0內(nèi),而點(diǎn)B不在平面SKIPIF1<0內(nèi),所以SKIPIF1<0四點(diǎn)不共面,故選項(xiàng)B正確;SKIPIF1<0三點(diǎn)均在平面SKIPIF1<0內(nèi),而點(diǎn)A不在平面SKIPIF1<0內(nèi),所以直線AO與平面SKIPIF1<0相交且點(diǎn)O是交點(diǎn),所以點(diǎn)M不在平面SKIPIF1<0內(nèi),即SKIPIF1<0四點(diǎn)不共面,故選項(xiàng)C錯(cuò)誤;SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0為平行四邊形,所以SKIPIF1<0共面,所以SKIPIF1<0四點(diǎn)共面,故選項(xiàng)D正確.故選:C.5.(2023·全國(guó)·高三專題練習(xí))下面幾個(gè)命題:①兩兩相交的三條直線共面;②如果兩個(gè)平面有公共點(diǎn),則公共點(diǎn)有無(wú)數(shù)個(gè);③一條直線與兩條平行直線都相交,那么這三條直線共面;④順次連接空間四邊形各邊中點(diǎn)所得的四邊形是平行四邊形.其中正確命題的個(gè)數(shù)是(
)A.2個(gè) B.3個(gè) C.4個(gè) D.1個(gè)【答案】B【分析】根據(jù)空間位置關(guān)系可直接判斷各命題.【詳解】命題①:三條直線兩兩相交,若三條直線相交于一點(diǎn),則無(wú)法確定一個(gè)平面,故①錯(cuò)誤;命題②:如果兩個(gè)平面有公共點(diǎn),若兩平面重合,則公共點(diǎn)有無(wú)數(shù)個(gè),若兩平面不重合,則有且僅有一條過(guò)該公共點(diǎn)的公共直線,則公共點(diǎn)有無(wú)數(shù)個(gè),故②正確;命題③:不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0唯一確定一個(gè)平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故一條直線與兩條平行直線都相交,那么這三條直線共面,即③正確;命題④:空間四邊形SKIPIF1<0中,連接SKIPIF1<0,SKIPIF1<0可得一個(gè)三棱錐,將四個(gè)中點(diǎn)連接,得到四邊形SKIPIF1<0,由中位線的性質(zhì)知,SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,故順次連接空間四邊形各邊中點(diǎn)所得的四邊形是平行四邊形,即④正確.故選:B6.(2023·全國(guó)·高三專題練習(xí))在正方體中,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是該點(diǎn)所在棱的中點(diǎn),則下列圖形中SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面的是(
)A. B.C. D.【答案】B【分析】對(duì)于B,證明SKIPIF1<0即可;而對(duì)于BCD,首先通過(guò)輔助線找到其中三點(diǎn)所在的平面,然后說(shuō)明另外一點(diǎn)不在該平面中即可.【詳解】對(duì)于選項(xiàng)SKIPIF1<0,如下圖,點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0確定一個(gè)平面,該平面與底面交于SKIPIF1<0,而點(diǎn)SKIPIF1<0不在平面SKIPIF1<0上,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)不共面;對(duì)于選項(xiàng)SKIPIF1<0,連結(jié)底面對(duì)角線SKIPIF1<0,由中位線定理得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)共面對(duì)于選項(xiàng)C,顯然SKIPIF1<0、SKIPIF1<0、SKIPIF1<0所確定的平面為正方體的底面,而點(diǎn)SKIPIF1<0不在該平面內(nèi),故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)不共面;對(duì)于選項(xiàng)D,如圖,取部分棱的中點(diǎn),順次連接,得一個(gè)正六邊形,即點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0確定的平面,該平面與正方體正面的交線為SKIPIF1<0,而點(diǎn)SKIPIF1<0不在直線SKIPIF1<0上,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)不共面.故選:B7.(2023·全國(guó)·高三專題練習(xí))如圖所示,在空間四邊形ABCD中,點(diǎn)E,H分別是邊AB,AD的中點(diǎn),點(diǎn)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0,則下列說(shuō)法正確的是()①E,F(xiàn),G,H四點(diǎn)共面;②EF與GH異面;③EF與GH的交點(diǎn)M可能在直線AC上,也可能不在直線AC上;④EF與GH的交點(diǎn)M一定在直線AC上.A.①③ B.①④ C.②③ D.②④【答案】B【分析】利用三角形中位線性質(zhì)、平行線分線段成比例定理、平面基本事實(shí)推理,再逐一判斷各個(gè)命題作答.【詳解】在空間四邊形ABCD中,點(diǎn)E,H分別是邊AB,AD的中點(diǎn),則SKIPIF1<0,且SKIPIF1<0,點(diǎn)F,G分別是邊BC,CD上的點(diǎn),且SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,因此SKIPIF1<0,點(diǎn)E,F(xiàn),G,H四點(diǎn)共面,①正確,②錯(cuò)誤;因SKIPIF1<0,SKIPIF1<0,即四邊形SKIPIF1<0是梯形,則EF與GH必相交,令交點(diǎn)為M,點(diǎn)M在EF上,而EF在平面ACB上,則點(diǎn)M在平面ACB上,同理點(diǎn)M在平面ACD上,則點(diǎn)M是平面ACB與平面ACD的公共點(diǎn),而AC是平面ACB與平面ACD的交線,所以點(diǎn)M一定在直線AC上,④正確,③錯(cuò)誤,所以說(shuō)法正確的命題序號(hào)是①④.故選:B8.(2023·全國(guó)·高三專題練習(xí))如圖,已知SKIPIF1<0分別是正方體所在棱的中點(diǎn),則下列直線中與直線SKIPIF1<0相交的是(
).A.直線SKIPIF1<0 B.直線SKIPIF1<0C.直線SKIPIF1<0 D.直線SKIPIF1<0.【答案】A【分析】通過(guò)空間想象直接可得.【詳解】如圖,易知SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0為梯形,故SKIPIF1<0與EF相交,A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故B錯(cuò)誤;因?yàn)槠矫鍯DHSKIPIF1<0平面EFNL,SKIPIF1<0平面CDH,SKIPIF1<0平面EFNL,所以直線CD與直線EF無(wú)公共點(diǎn),故C錯(cuò)誤;因?yàn)镾KIPIF1<0平面ADF,SKIPIF1<0平面SKIPIF1<0,故AD與EF異面,D錯(cuò)誤.故選:A二、多選題9.(2023春·江蘇南京·高三校聯(lián)考階段練習(xí))如圖所示,在正方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),直線SKIPIF1<0交平面SKIPIF1<0于點(diǎn)SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線 B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面【答案】ABC【分析】根據(jù)點(diǎn)與線、點(diǎn)與面、線與面的位置關(guān)系判斷即可;【詳解】解:在正方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),直線SKIPIF1<0交平面SKIPIF1<0于點(diǎn)SKIPIF1<0,在選項(xiàng)SKIPIF1<0中,SKIPIF1<0直線SKIPIF1<0交平面SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0平面SKIPIF1<0,底面SKIPIF1<0為正方形,所以SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,故選項(xiàng)SKIPIF1<0正確;在選項(xiàng)SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,故SKIPIF1<0正確;在選項(xiàng)SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)共面,故SKIPIF1<0正確;在選項(xiàng)SKIPIF1<0中,SKIPIF1<0直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)不共面,故SKIPIF1<0錯(cuò)誤.故選:SKIPIF1<0.10.(2023·遼寧沈陽(yáng)·東北育才學(xué)校??寄M預(yù)測(cè))在正方體SKIPIF1<0中,SKIPIF1<0分別為棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的一點(diǎn),且SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0是棱SKIPIF1<0上的動(dòng)點(diǎn),則(
)A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0平面SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0平面SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),存在點(diǎn)SKIPIF1<0,使SKIPIF1<0四點(diǎn)共面D.當(dāng)SKIPIF1<0時(shí),存在點(diǎn)SKIPIF1<0,使SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三條直線交于同一點(diǎn)【答案】BCD【分析】利用圖形,根據(jù)空間中點(diǎn)線面的位置關(guān)系逐一對(duì)各項(xiàng)進(jìn)行判斷即可得出結(jié)果.【詳解】對(duì)于A,當(dāng)SKIPIF1<0時(shí),如圖1,在SKIPIF1<0取點(diǎn)SKIPIF1<0,使SKIPIF1<0,取SKIPIF1<0中點(diǎn)SKIPIF1<0,易知SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,所以選項(xiàng)A錯(cuò)誤;對(duì)于B,如圖2,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,易知四邊形SKIPIF1<0與SKIPIF1<0均為平行四邊形,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則A,F(xiàn),E,C四點(diǎn)共面,SKIPIF1<0平面SKIPIF1<0,所以選項(xiàng)B正確;對(duì)于C,如圖3,延長(zhǎng)SKIPIF1<0與SKIPIF1<0的延長(zhǎng)線交于點(diǎn)M,連接SKIPIF1<0與SKIPIF1<0的交點(diǎn)即為點(diǎn)I,則A,F(xiàn),H,I四點(diǎn)共面,所以選項(xiàng)C正確;對(duì)于D,如圖4,連接SKIPIF1<0并延長(zhǎng)與SKIPIF1<0的延長(zhǎng)線交于點(diǎn)N,連接SKIPIF1<0與SKIPIF1<0的交點(diǎn)即為點(diǎn)I,則存在點(diǎn)I,使SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三條直線交于同一點(diǎn)N,所以選項(xiàng)D正確.故選:BCD.三、填空題11.(2023·全國(guó)·高三專題練習(xí))如圖,正方體SKIPIF1<0中,O是SKIPIF1<0中點(diǎn),SKIPIF1<0與截面SKIPIF1<0交于P,那么SKIPIF1<0、P、O三點(diǎn)共線,其理由是.
【答案】SKIPIF1<0、P、O是平面SKIPIF1<0和平面SKIPIF1<0的公共點(diǎn),所以它們共平面SKIPIF1<0與平面SKIPIF1<0的交線【分析】確定SKIPIF1<0、SKIPIF1<0、SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0平面SKIPIF1<0,得到結(jié)論.【詳解】O是SKIPIF1<0中點(diǎn),則O是SKIPIF1<0中點(diǎn),故SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0與截面SKIPIF1<0交于P,故SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0、SKIPIF1<0、SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0在平面SKIPIF1<0和平面SKIPIF1<0的交線上.故答案為:SKIPIF1<0、P、O是平面SKIPIF1<0和平面SKIPIF1<0的公共點(diǎn),所以它們共平面SKIPIF1<0與平面SKIPIF1<0的交線.12.(2023·全國(guó)·高三專題練習(xí))如圖,在正方體中,A、B、C、D分別是頂點(diǎn)或所在棱的中點(diǎn),則A、B、C、D四點(diǎn)共面的圖形(填上所有正確答案的序號(hào)).【答案】①③④【分析】四點(diǎn)共面主要通過(guò)證明兩線平行說(shuō)明,本題利用中位線、平行四邊形的性質(zhì)結(jié)合平行線的傳遞性進(jìn)行說(shuō)明,證明平行時(shí)絕不能憑直觀感覺(jué)或無(wú)理論依據(jù).圖①:證明AB∥EF,CD∥EF,可得AB∥CD;圖③:證明BD∥EF,AC∥EF,可得BD∥AC;圖④:證明GH∥EF,AC∥EF,BD∥GH,可得BD∥AC.【詳解】圖①:取GD的中點(diǎn)F,連結(jié)BF、EF,∵B、F均為相應(yīng)邊的中點(diǎn),則:SKIPIF1<0∥SKIPIF1<0又∵SKIPIF1<0∥SKIPIF1<0,則SKIPIF1<0∥SKIPIF1<0即ABFE為平行四邊形∴AB∥EF同理:CD∥EF則AB∥CD即A、B、C、D四點(diǎn)共面,圖①正確;圖②:顯然AB與CD異面,圖②不正確;圖③:連結(jié)AC,BD,EF,∵BE∥DF即BDFE為平行四邊形∴BD∥EF又∵A、C分別為相應(yīng)邊的中點(diǎn),則AC∥EF∴BD∥AC即A、B、C、D四點(diǎn)共面,圖③正確;圖④:連結(jié)AC,BD,EF,GH,∵GE∥HF即GEFH為平行四邊形,則GH∥EF又∵A、C分別為相應(yīng)邊的中點(diǎn),則AC∥EF同理:BD∥GH∴BD∥AC即A、B、C、D四點(diǎn)共面,圖④正確.故答案為:①③④.13.(2023春·河南許昌·高三鄢陵一中校考階段練習(xí))如圖,已知四棱錐SKIPIF1<0的底面ABCD為平行四邊形,M是棱SKIPIF1<0上靠近點(diǎn)D的三等分點(diǎn),N是SKIPIF1<0的中點(diǎn),平面AMN交SKIPIF1<0于點(diǎn)H,則,SKIPIF1<0.【答案】SKIPIF1<0【分析】將四棱錐補(bǔ)為三棱柱SKIPIF1<0,由SKIPIF1<0求解.【詳解】解:如圖所示:補(bǔ)全四棱錐為三棱柱,作SKIPIF1<0,且SKIPIF1<0,因?yàn)锳BCD為平行四邊形,所以SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以四邊形SKIPIF1<0和四邊形SKIPIF1<0都是平行四邊形,因?yàn)镹為中點(diǎn),則延長(zhǎng)AN必過(guò)點(diǎn)E,所以A,N,E,H,M在同一平面內(nèi),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镸是棱SKIPIF1<0上靠近點(diǎn)D的三等分點(diǎn),所以SKIPIF1<0,則SKIPIF1<0,故答案為:SKIPIF1<014.(2023·四川綿陽(yáng)·統(tǒng)考模擬預(yù)測(cè))如圖所示,在直四棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,P為棱SKIPIF1<0上一點(diǎn),且SKIPIF1<0(SKIPIF1<0為常數(shù)),直線SKIPIF1<0與平面SKIPIF1<0相交于點(diǎn)Q.則線段SKIPIF1<0的長(zhǎng)為.【答案】SKIPIF1<0【分析】根據(jù)題意作輔助線,根據(jù)平行關(guān)系可得SKIPIF1<0,取SKIPIF1<0,根據(jù)平行關(guān)系可得SKIPIF1<0//SKIPIF1<0,進(jìn)而可知點(diǎn)SKIPIF1<0即為直線SKIPIF1<0與平面SKIPIF1<0的交點(diǎn),即可得結(jié)果.【詳解】∵SKIPIF1<0,所以SKIPIF1<0,分別過(guò)SKIPIF1<0作SKIPIF1<0,垂足分別為SKIPIF1<0,分別過(guò)SKIPIF1<0作SKIPIF1<0,垂足分別為SKIPIF1<0,可得SKIPIF1<0均為平行四邊形,則SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0//SKIPIF1<0,交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,在SKIPIF1<0上取點(diǎn)SKIPIF1<0,使得SKIPIF1<0,∵SKIPIF1<0//SKIPIF1<0,SKIPIF1<0//SKIPIF1<0,則SKIPIF1<0//SKIPIF1<0,可知:SKIPIF1<0//SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0為平行四邊形,∴SKIPIF1<0//SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0為平行四邊形,則SKIPIF1<0//SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0//SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0為平行四邊形,則SKIPIF1<0//SKIPIF1<0,又∵SKIPIF1<0//SKIPIF1<0,則SKIPIF1<0//SKIPIF1<0,即SKIPIF1<0四點(diǎn)共面,故點(diǎn)SKIPIF1<0即為直線SKIPIF1<0與平面SKIPIF1<0的交點(diǎn),∴SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)睛:在處理截面問(wèn)題時(shí),常常轉(zhuǎn)化為平行關(guān)系問(wèn)題,根據(jù)線、面平行關(guān)系的判定定理以及性質(zhì)定理分析判斷.題型二異面直線策略方法1.平移法求異面直線所成角的一般步驟2.坐標(biāo)法求異面直線所成的角當(dāng)題設(shè)中含有兩兩垂直的三邊關(guān)系或比較容易建立空間直角坐標(biāo)系時(shí),常采用坐標(biāo)法.注:如果求出的角是銳角或直角,則它就是要求的角;如果求出的角是鈍角,則它的補(bǔ)角才是要求的角.【典例1】如圖所示,在正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),則異面直線SKIPIF1<0與SKIPIF1<0所成的角的大小為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用線線平行,將異面直線所成的角轉(zhuǎn)化為相交直線所成的角,在三角形中求解即可.【詳解】如圖,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,
SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0是異面直線SKIPIF1<0與SKIPIF1<0所成的角,且SKIPIF1<0是等邊三角形,SKIPIF1<0.故選:SKIPIF1<0.【典例2】在直三棱柱SKIPIF1<0中,SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用勾股定理的逆定理及直棱柱的定義,建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo)及直線SKIPIF1<0與SKIPIF1<0的方向向量,利用向量的夾角公式,結(jié)合向量夾角與線線角的關(guān)系即可求解.【詳解】因?yàn)镾KIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0,又因?yàn)閭?cè)棱與底面垂直,所以以SKIPIF1<0為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系SKIPIF1<0,如圖所示
易得SKIPIF1<0,所以SKIPIF1<0,設(shè)異面直線SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0所以異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.故選:A.【題型訓(xùn)練】一、單選題1.(2023·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)??级#┰谌忮FSKIPIF1<0中,SKIPIF1<0兩兩垂直,SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】將三棱錐SKIPIF1<0放在一個(gè)長(zhǎng)方體中,建立空間直角坐標(biāo)系,求出向量SKIPIF1<0,代入夾角公式即可求解.【詳解】依題意,把三棱錐放在長(zhǎng)方體中,如圖所示:因?yàn)镾KIPIF1<0,以SKIPIF1<0為空間直角坐標(biāo)系原點(diǎn),SKIPIF1<0分別為SKIPIF1<0軸,建立空間直角坐標(biāo)系,則有:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.2.(2023春·河南·高三階段練習(xí))如圖,在四棱臺(tái)SKIPIF1<0中,正方形SKIPIF1<0和SKIPIF1<0的中心分別為SKIPIF1<0和SKIPIF1<0平面SKIPIF1<0,則直線SKIPIF1<0與直線SKIPIF1<0所成角的正切值為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】作出直線SKIPIF1<0與直線SKIPIF1<0所成角,解直角三角形求得其正切值.【詳解】連接SKIPIF1<0,作SKIPIF1<0,垂足為SKIPIF1<0即直線SKIPIF1<0與直線SKIPIF1<0所成的角.SKIPIF1<0.
故選:B3.(2023·全國(guó)·模擬預(yù)測(cè))如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】建立空間直角坐標(biāo)系,利用空間向量法計(jì)算可得.【詳解】在直三棱柱SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,如圖建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.故選:B4.(2023·河南洛陽(yáng)·洛寧縣第一高級(jí)中學(xué)??寄M預(yù)測(cè))如圖四棱錐P-ABCD中,底面ABCD為正方形,且各棱長(zhǎng)均相等,E是PB的中點(diǎn),則異面直線AE與PC所成角的余弦值為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,以SKIPIF1<0點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,分別求得向量SKIPIF1<0和SKIPIF1<0的坐標(biāo),結(jié)合向量的夾角公式,即可得解.【詳解】連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由題意得,SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,以SKIPIF1<0點(diǎn)為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,
設(shè)四棱錐SKIPIF1<0各棱長(zhǎng)均為2,則SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,設(shè)異面直線SKIPIF1<0與SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0.故選:A.5.(2023·全國(guó)·高三專題練習(xí))已知三棱錐SKIPIF1<0中,SKIPIF1<0平面ABC,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D為PB的中點(diǎn),則異面直線AD與PC所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】取BC的中點(diǎn)E,則SKIPIF1<0,SKIPIF1<0或其補(bǔ)角即為異面直線AD與PC所成的角,求出所需邊長(zhǎng),利用余弦定理求SKIPIF1<0即可.【詳解】如圖所示,取BC的中點(diǎn)E,連接AE,DE,
則SKIPIF1<0,SKIPIF1<0或其補(bǔ)角即為異面直線AD與PC所成的角.由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,E為BC的中點(diǎn),則SKIPIF1<0,SKIPIF1<0平面ABC,SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,根據(jù)余弦定理可得SKIPIF1<0.所以異面直線AD與PC所成角的余弦值為SKIPIF1<0.故選:D6.(2023秋·湖北·高三校聯(lián)考開(kāi)學(xué)考試)在直三棱柱SKIPIF1<0中,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則可得SKIPIF1<0為異面直線SKIPIF1<0與SKIPIF1<0所成的角或補(bǔ)角,然后在SKIPIF1<0中求解即可.【詳解】設(shè)SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0因?yàn)镾KIPIF1<0分別為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0∥SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0∥SKIPIF1<0,所以SKIPIF1<0為異面直線SKIPIF1<0與SKIPIF1<0所成的角或補(bǔ)角.因?yàn)镾KIPIF1<0分別為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0.故選:D
7.(2023·陜西漢中·統(tǒng)考二模)如圖,在棱長(zhǎng)為2的正方體SKIPIF1<0中,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),則SKIPIF1<0與SKIPIF1<0所成的角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】建立空間直角坐標(biāo)系,分別求得SKIPIF1<0,再利用向量的夾角公式求解.【詳解】解:建立如圖所示空間直角坐標(biāo)系:,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故選:C8.(2023·江蘇·高三專題練習(xí))在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0所成角的余弦值是(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】建立空間直角坐標(biāo)系,求得SKIPIF1<0和SKIPIF1<0,利用空間向量法求解即可.【詳解】以SKIPIF1<0為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則由題意可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0,故選:A9.(2023·貴州畢節(jié)·??寄M預(yù)測(cè))鐘鼓樓是中國(guó)傳統(tǒng)建筑之一,屬于鐘樓和鼓樓的合稱,是主要用于報(bào)時(shí)的建筑.中國(guó)古代一般建于城市的中心地帶,在現(xiàn)代城市中,也可以常??匆?jiàn)附有鐘樓的建筑.如圖,在某市一建筑物樓頂有一頂部逐級(jí)收攏的四面鐘樓,四個(gè)大鐘對(duì)稱分布在四棱柱的四個(gè)側(cè)面(四棱柱看成正四棱柱,鐘面圓心在棱柱側(cè)面中心上),在整點(diǎn)時(shí)刻(在0點(diǎn)至12點(diǎn)中取整數(shù)點(diǎn),含0點(diǎn),不含12點(diǎn)),已知在3點(diǎn)時(shí)和9點(diǎn)時(shí),相鄰兩鐘面上的時(shí)針?biāo)诘膬蓷l直線相互垂直,則在2點(diǎn)時(shí)和8點(diǎn)時(shí),相鄰兩鐘面上的時(shí)針?biāo)诘膬蓷l直線所成的角的余弦值為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】在正四棱柱SKIPIF1<0中,以SKIPIF1<0為原點(diǎn),以SKIPIF1<0的方向分別為SKIPIF1<0軸建立空間直角坐標(biāo)系,利用空間向量的夾角公式可求出結(jié)果.【詳解】如圖,在正四棱柱SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 膝關(guān)節(jié)保膝治療
- 物聯(lián)網(wǎng)燃?xì)鈭?bào)警器
- 預(yù)防艾滋病基本知識(shí)
- 停薪留職協(xié)議書(shū)樣本
- 媒體行業(yè)人事管理
- 劇院裝修工程協(xié)議
- 體育場(chǎng)雨污管網(wǎng)改造合同
- 商業(yè)大樓批蕩施工協(xié)議
- 物流園區(qū)招投標(biāo)法規(guī)體系精講
- 消防演練吊車(chē)租賃合同范本
- 2024年檔案管理中級(jí)考試試卷及答案發(fā)布
- 外國(guó)新聞傳播史 課件 第二十章 澳大利亞的新聞傳播事業(yè)
- 妊娠期及產(chǎn)褥期靜脈血栓栓塞癥預(yù)防和診治試題及答案
- 好的六堡茶知識(shí)講座
- 環(huán)境科學(xué)大學(xué)生生涯發(fā)展報(bào)告
- 鋼筋優(yōu)化技術(shù)創(chuàng)效手冊(cè)(2022年)
- 醫(yī)學(xué)課件指骨骨折
- 拜占庭歷史與文化智慧樹(shù)知到期末考試答案2024年
- 2024年物流行業(yè)全面培訓(xùn)資料
- 酒店式公寓方案
- (2024版)初中八年級(jí)生物備考全攻略
評(píng)論
0/150
提交評(píng)論