![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(含解析)_第1頁](http://file4.renrendoc.com/view14/M09/35/16/wKhkGWa0FVuAF56bAAIDtZKyNm8483.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(含解析)_第2頁](http://file4.renrendoc.com/view14/M09/35/16/wKhkGWa0FVuAF56bAAIDtZKyNm84832.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(含解析)_第3頁](http://file4.renrendoc.com/view14/M09/35/16/wKhkGWa0FVuAF56bAAIDtZKyNm84833.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(含解析)_第4頁](http://file4.renrendoc.com/view14/M09/35/16/wKhkGWa0FVuAF56bAAIDtZKyNm84834.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第15講 導(dǎo)數(shù)與函數(shù)的單調(diào)性(含解析)_第5頁](http://file4.renrendoc.com/view14/M09/35/16/wKhkGWa0FVuAF56bAAIDtZKyNm84835.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第15講導(dǎo)數(shù)與函數(shù)的單調(diào)性(精講)題型目錄一覽①導(dǎo)數(shù)與原函數(shù)圖像之間的聯(lián)系②不含參數(shù)的函數(shù)單調(diào)性③含參數(shù)的函數(shù)單調(diào)性一次函數(shù)型二次函數(shù)型Ⅰ(可因式分解)二次函數(shù)型Ⅱ(不可因式分解)指數(shù)函數(shù)型④函數(shù)單調(diào)性中的參數(shù)值(范圍)問題★【文末附錄-導(dǎo)數(shù)與函數(shù)的單調(diào)性思維導(dǎo)圖】一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、單調(diào)性基礎(chǔ)問題1.函數(shù)的單調(diào)性函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)SKIPIF1<0在某個(gè)區(qū)間內(nèi)可導(dǎo),如果SKIPIF1<0,則SKIPIF1<0為增函數(shù);如果SKIPIF1<0,則SKIPIF1<0為減函數(shù).2.已知函數(shù)的單調(diào)性問題=1\*GB3①若SKIPIF1<0在某個(gè)區(qū)間上單調(diào)遞增,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0);反之,要滿足SKIPIF1<0,才能得出SKIPIF1<0在某個(gè)區(qū)間上單調(diào)遞增;=2\*GB3②若SKIPIF1<0在某個(gè)區(qū)間上單調(diào)遞減,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0);反之,要滿足SKIPIF1<0,才能得出SKIPIF1<0在某個(gè)區(qū)間上單調(diào)遞減.二、討論單調(diào)區(qū)間問題類型一:不含參數(shù)單調(diào)性討論(1)求導(dǎo)化簡(jiǎn)定義域(化簡(jiǎn)應(yīng)先通分,盡可能因式分解;定義域需要注意是否是連續(xù)的區(qū)間);(2)變號(hào)保留定號(hào)去(變號(hào)部分:導(dǎo)函數(shù)中未知正負(fù),需要單獨(dú)討論的部分.定號(hào)部分:已知恒正或恒負(fù),無需單獨(dú)討論的部分);(3)求根做圖得結(jié)論(如能直接求出導(dǎo)函數(shù)等于0的根,并能做出導(dǎo)函數(shù)與x軸位置關(guān)系圖,則導(dǎo)函數(shù)正負(fù)區(qū)間段已知,可直接得出結(jié)論);(4)未得結(jié)論斷正負(fù)(若不能通過第三步直接得出結(jié)論,則先觀察導(dǎo)函數(shù)整體的正負(fù));(5)正負(fù)未知看零點(diǎn)(若導(dǎo)函數(shù)正負(fù)難判斷,則觀察導(dǎo)函數(shù)零點(diǎn));(6)一階復(fù)雜求二階(找到零點(diǎn)后仍難確定正負(fù)區(qū)間段,或一階導(dǎo)函數(shù)無法觀察出零點(diǎn),則求二階導(dǎo));求二階導(dǎo)往往需要構(gòu)造新函數(shù),令一階導(dǎo)函數(shù)或一階導(dǎo)函數(shù)中變號(hào)部分為新函數(shù),對(duì)新函數(shù)再求導(dǎo).(7)借助二階定區(qū)間(通過二階導(dǎo)正負(fù)判斷一階導(dǎo)函數(shù)的單調(diào)性,進(jìn)而判斷一階導(dǎo)函數(shù)正負(fù)區(qū)間段);類型二:含參數(shù)單調(diào)性討論(1)求導(dǎo)化簡(jiǎn)定義域(化簡(jiǎn)應(yīng)先通分,然后能因式分解要進(jìn)行因式分解,定義域需要注意是否是一個(gè)連續(xù)的區(qū)間);(2)變號(hào)保留定號(hào)去(變號(hào)部分:導(dǎo)函數(shù)中未知正負(fù),需要單獨(dú)討論的部分.定號(hào)部分:已知恒正或恒負(fù),無需單獨(dú)討論的部分);(3)恒正恒負(fù)先討論(變號(hào)部分因?yàn)閰?shù)的取值恒正恒負(fù));然后再求有效根;(4)根的分布來定參(此處需要從兩方面考慮:根是否在定義域內(nèi)和多根之間的大小關(guān)系);(5)導(dǎo)數(shù)圖像定區(qū)間;【常用結(jié)論】①使SKIPIF1<0的離散點(diǎn)不影響函數(shù)的單調(diào)性,即當(dāng)SKIPIF1<0在某個(gè)區(qū)間內(nèi)離散點(diǎn)處為零,在其余點(diǎn)處均為正(或負(fù))時(shí),SKIPIF1<0在這個(gè)區(qū)間上仍舊是單調(diào)遞增(或遞減)的.例如,在SKIPIF1<0上,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而顯然SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù).②若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0(SKIPIF1<0不恒為0),反之不成立.因?yàn)镾KIPIF1<0,即SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在這個(gè)區(qū)間為常值函數(shù);同理,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0(SKIPIF1<0不恒為0),反之不成立.這說明在一個(gè)區(qū)間上函數(shù)的導(dǎo)數(shù)大于零,是這個(gè)函數(shù)在該區(qū)間上單調(diào)遞增的充分不必要條件.于是有如下結(jié)論:SKIPIF1<0SKIPIF1<0單調(diào)遞增;SKIPIF1<0單調(diào)遞增SKIPIF1<0;SKIPIF1<0SKIPIF1<0單調(diào)遞減;SKIPIF1<0單調(diào)遞減SKIPIF1<0.二、題型分類精講二、題型分類精講題型一導(dǎo)數(shù)與原函數(shù)圖像之間的聯(lián)系策略方法原函數(shù)的單調(diào)性與導(dǎo)函數(shù)的函數(shù)值的符號(hào)的關(guān)系,原函數(shù)SKIPIF1<0單調(diào)遞增SKIPIF1<0導(dǎo)函數(shù)SKIPIF1<0(導(dǎo)函數(shù)等于0,只在離散點(diǎn)成立,其余點(diǎn)滿足SKIPIF1<0);原函數(shù)單調(diào)遞減SKIPIF1<0導(dǎo)函數(shù)SKIPIF1<0(導(dǎo)函數(shù)等于0,只在離散點(diǎn)成立,其余點(diǎn)滿足SKIPIF1<0).【典例1】已知函數(shù)SKIPIF1<0的圖象如圖所示(其中SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù)),則SKIPIF1<0的圖象大致是(
)A. B.C. D.【答案】C【分析】由SKIPIF1<0的圖象得到SKIPIF1<0的取值情況,即可得到SKIPIF1<0的單調(diào)性,即可判斷.【詳解】由SKIPIF1<0的圖象可知當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故符合題意的只有C.故選:C.【題型訓(xùn)練】一、單選題1.(2023·浙江紹興·統(tǒng)考模擬預(yù)測(cè))如圖是函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0,則SKIPIF1<0的圖象大致為(
)A. B.C. D.【答案】D【分析】根據(jù)導(dǎo)函數(shù)的圖象在區(qū)間SKIPIF1<0內(nèi)的函數(shù)的范圍,判斷出函數(shù)SKIPIF1<0區(qū)間SKIPIF1<0上各點(diǎn)處切線的斜率的范圍,根據(jù)導(dǎo)函數(shù)的圖象得導(dǎo)函數(shù)函數(shù)值的符號(hào),得函數(shù)SKIPIF1<0的單調(diào)性,再結(jié)合四個(gè)選項(xiàng)可得答案.【詳解】由SKIPIF1<0的圖象可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上各點(diǎn)處切線的斜率在區(qū)間SKIPIF1<0內(nèi),對(duì)于A,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上各點(diǎn)處切線的斜率均小于0,故A不正確;對(duì)于B,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上存在點(diǎn),在該點(diǎn)處切線的斜率大于1,故B不正確;對(duì)于C,在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0上存在點(diǎn),在該點(diǎn)處切線的斜率大于1,故C不正確;對(duì)于D,由SKIPIF1<0的圖象可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0上各點(diǎn)處切線的斜率在區(qū)間SKIPIF1<0內(nèi),在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,而函數(shù)SKIPIF1<0的圖象均符合這些性質(zhì),故D正確.故選:D2.(2023·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),SKIPIF1<0的圖象如圖所示,則SKIPIF1<0的圖象最有可能的是(
)A. B.C. D.【答案】C【分析】根據(jù)導(dǎo)函數(shù)的圖象得出函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)SKIPIF1<0的單調(diào)性即可判斷.【詳解】由導(dǎo)函數(shù)的圖象可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增.只有C選項(xiàng)的圖象符合.故選:C.3.(2023·陜西西安·校聯(lián)考一模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的大致圖像如圖所示,SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】分SKIPIF1<0、SKIPIF1<0兩種情況求解即可.【詳解】若SKIPIF1<0,則SKIPIF1<0單調(diào)遞減,圖像可知,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,由圖像可知SKIPIF1<0,故不等式SKIPIF1<0的解集為SKIPIF1<0.故選:C二、多選題4.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象如圖所示,則下列說法正確的是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有SKIPIF1<0個(gè)極值點(diǎn)D.SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線的斜率大于SKIPIF1<0【答案】ACD【分析】根據(jù)導(dǎo)函數(shù)的正負(fù)可得SKIPIF1<0單調(diào)性,由單調(diào)性可判斷AB正誤;由極值點(diǎn)定義可知C正確;由SKIPIF1<0可知D正確.【詳解】由圖象可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增;在SKIPIF1<0上單調(diào)遞減;對(duì)于A,SKIPIF1<0,SKIPIF1<0,A正確;對(duì)于B,SKIPIF1<0,SKIPIF1<0,B錯(cuò)誤;對(duì)于C,由極值點(diǎn)定義可知:SKIPIF1<0為SKIPIF1<0的極大值點(diǎn);SKIPIF1<0為SKIPIF1<0的極小值點(diǎn),即SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有SKIPIF1<0個(gè)極值點(diǎn),C正確;對(duì)于D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的斜率大于SKIPIF1<0,D正確.故選:ACD.三、填空題5.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的圖象如圖所示,記SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0最大的是________.【答案】SKIPIF1<0【分析】根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合SKIPIF1<0的圖象分析判斷即可【詳解】根據(jù)導(dǎo)數(shù)的幾何意義,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0處的切線斜率,又SKIPIF1<0與SKIPIF1<0處的切線單調(diào)遞增,SKIPIF1<0處的切線單調(diào)遞減,且SKIPIF1<0處的切線比SKIPIF1<0處的切線更陡峭,∴SKIPIF1<0,故最大為SKIPIF1<0.故答案為:SKIPIF1<06.(2023春·上?!じ呷y(tǒng)考開學(xué)考試)已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù)是SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象如圖所示,則關(guān)于x的不等式SKIPIF1<0的解集為______.【答案】SKIPIF1<0【分析】先判斷出SKIPIF1<0的單調(diào)性,然后求得SKIPIF1<0的解集.【詳解】依題意SKIPIF1<0是奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,由圖象可知,SKIPIF1<0在區(qū)間SKIPIF1<0遞減,SKIPIF1<0;SKIPIF1<0在區(qū)間SKIPIF1<0遞增,SKIPIF1<0.所以SKIPIF1<0的解集SKIPIF1<0.故答案為:SKIPIF1<0題型二不含參數(shù)的函數(shù)單調(diào)性策略方法求函數(shù)單調(diào)區(qū)間的步驟(1)確定函數(shù)f(x)的定義域.(2)求f′(x).(3)在定義域內(nèi)解不等式f′(x)>0,得單調(diào)遞增區(qū)間.(4)在定義域內(nèi)解不等式f′(x)<0,得單調(diào)遞減區(qū)間.【典例1】函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求出導(dǎo)函數(shù)SKIPIF1<0,在定義域內(nèi)解不等式SKIPIF1<0可得單調(diào)遞增區(qū)間.【詳解】由已知得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0.故選:B.【題型訓(xùn)練】一、單選題1.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【答案】C【分析】根據(jù)給定的函數(shù),利用導(dǎo)數(shù)求出單調(diào)減區(qū)間作答.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求導(dǎo)得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0.故選:C2.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,現(xiàn)給出如下結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中正確結(jié)論個(gè)數(shù)為(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)【答案】D【分析】利用導(dǎo)數(shù)判定三次函數(shù)的圖象與性質(zhì),結(jié)合圖象即可一一判定結(jié)論.【詳解】求導(dǎo)函數(shù)可得SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0,或SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0單調(diào)遞減區(qū)間為SKIPIF1<0所以SKIPIF1<0極大值SKIPIF1<0SKIPIF1<0,SKIPIF1<0極小值SKIPIF1<0SKIPIF1<0要使SKIPIF1<0有三個(gè)解SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,那么結(jié)合函數(shù)SKIPIF1<0草圖可知:SKIPIF1<0及函數(shù)有個(gè)零點(diǎn)SKIPIF1<0在SKIPIF1<0之間,所以SKIPIF1<0SKIPIF1<0,且SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故①正確;SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即②③正確;SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0(i),SKIPIF1<0(ii),把(ii)代入(i)式的平方化簡(jiǎn)得:SKIPIF1<0;即④正確;故選:D.3.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】首先根據(jù)題干條件SKIPIF1<0,得SKIPIF1<0,化簡(jiǎn)整理得SKIPIF1<0,然后構(gòu)造函數(shù)SKIPIF1<0,借助導(dǎo)數(shù)求解SKIPIF1<0的最小值,即可求出SKIPIF1<0的最小值.【詳解】由SKIPIF1<0,得SKIPIF1<0,化簡(jiǎn)整理得:SKIPIF1<0;令SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;即SKIPIF1<0,故SKIPIF1<0故選:D二、多選題4.(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則(
)A.SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0 B.SKIPIF1<0有4個(gè)零點(diǎn)C.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱 D.曲線SKIPIF1<0與SKIPIF1<0軸不相切【答案】CD【分析】對(duì)A直接求導(dǎo),令導(dǎo)函數(shù)小于0,解出即可,對(duì)B,通過求出極大值和極小值,結(jié)合其單調(diào)性即可判斷,對(duì)C選項(xiàng)利用函數(shù)奇偶性和函數(shù)平移的原則即可判斷,對(duì)D,利用函數(shù)極大值、極小值的符號(hào)即可判斷.【詳解】A選項(xiàng):易知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<00,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0和SKIPIF1<0,A錯(cuò)誤;B選項(xiàng):令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0,和SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得極大值,因?yàn)镾KIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上沒有零點(diǎn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得極小值,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上至多有兩個(gè)零點(diǎn),B錯(cuò)誤;C選項(xiàng):設(shè)SKIPIF1<0,函數(shù)定義域?yàn)镾KIPIF1<0,關(guān)于原點(diǎn)對(duì)稱,且SKIPIF1<0,則SKIPIF1<0為奇函數(shù),所以SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱,將SKIPIF1<0的圖象向下平移2個(gè)單位長(zhǎng)度得到SKIPIF1<0的圖象,所以SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,C正確;D選項(xiàng):因?yàn)镾KIPIF1<0的極小值SKIPIF1<0,極大值SKIPIF1<0,所以曲線SKIPIF1<0與SKIPIF1<0軸不相切,D正確.故選:CD.三、填空題5.(2023·云南·校聯(lián)考二模)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為____________.【答案】SKIPIF1<0/SKIPIF1<0【分析】通過二次求導(dǎo),證明當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即得解.【詳解】由題得函數(shù)定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0(或SKIPIF1<0).故答案為:SKIPIF1<06.(2023春·江西·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為__________.【答案】SKIPIF1<0【分析】求導(dǎo)數(shù)SKIPIF1<0,令SKIPIF1<0,解不等式即可得函數(shù)的單調(diào)遞增區(qū)間.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0.故答案為:SKIPIF1<0.7.(2023秋·山東東營(yíng)·高三東營(yíng)市第一中學(xué)??计谀┖瘮?shù)SKIPIF1<0的單調(diào)遞增區(qū)間為___________.【答案】SKIPIF1<0,SKIPIF1<0【分析】對(duì)函數(shù)求導(dǎo),判斷導(dǎo)函數(shù)的正負(fù),導(dǎo)函數(shù)分子無法判斷正負(fù),再對(duì)分子求導(dǎo),利用導(dǎo)函數(shù)的單調(diào)性來判斷導(dǎo)函數(shù)的正負(fù),進(jìn)而得出原函數(shù)的單調(diào)區(qū)間.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0,則SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0,SKIPIF1<0.8.(2023·福建·統(tǒng)考模擬預(yù)測(cè))函數(shù)SKIPIF1<0的單調(diào)增區(qū)間是_______.【答案】SKIPIF1<0(或SKIPIF1<0也對(duì))【分析】SKIPIF1<0,由復(fù)合函數(shù)單調(diào)性知:SKIPIF1<0的增區(qū)間即為所求.【詳解】SKIPIF1<0,由復(fù)合函數(shù)單調(diào)性知:SKIPIF1<0的增區(qū)間即為所求,SKIPIF1<0.故答案為:SKIPIF1<0(或SKIPIF1<0也對(duì))9.(2023春·安徽亳州·高三??茧A段練習(xí))函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是__.【答案】SKIPIF1<0【分析】函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),即方程SKIPIF1<0有兩個(gè)根,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間,從而可畫出函數(shù)SKIPIF1<0的大致圖像,根據(jù)圖象即可得解.【詳解】SKIPIF1<0函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),SKIPIF1<0方程SKIPIF1<0有兩個(gè)根,即方程SKIPIF1<0有兩個(gè)根,設(shè)SKIPIF1<0,則函數(shù)SKIPIF1<0與SKIPIF1<0的圖像有兩個(gè)交點(diǎn),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0時(shí),取得最大值SKIPIF1<0,又SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0且SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的大致圖像,如圖所示,由圖像可知,SKIPIF1<0,SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.題型三含參數(shù)的函數(shù)單調(diào)性策略方法解決含參數(shù)的函數(shù)的單調(diào)性問題應(yīng)注意兩點(diǎn)(1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對(duì)不等式解集的影響進(jìn)行分類討論.(2)劃分函數(shù)的單調(diào)區(qū)間時(shí),要在函數(shù)定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點(diǎn)和函數(shù)的間斷點(diǎn).【典例1】已知函數(shù)SKIPIF1<0(其中a為參數(shù)).求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【答案】答案見解析【分析】求出原函數(shù)的導(dǎo)函數(shù),然后對(duì)SKIPIF1<0分類求得函數(shù)的單調(diào)區(qū)間;【詳解】SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;綜上:SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上遞增,無減區(qū)間,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;【典例2】已知函數(shù)SKIPIF1<0,SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性.【答案】答案見解析【分析】對(duì)SKIPIF1<0求導(dǎo),然后分SKIPIF1<0和SKIPIF1<0兩種情況討論即可;【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減:在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.【典例3】設(shè)函數(shù)SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【答案】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.【分析】對(duì)SKIPIF1<0求導(dǎo),分SKIPIF1<0和SKIPIF1<0和SKIPIF1<0三類討論導(dǎo)數(shù)的正負(fù),即可得出SKIPIF1<0的單調(diào)區(qū)間.【詳解】由題意得SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,③當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.【典例4】已知函數(shù)SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的底數(shù),SKIPIF1<0).求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;【答案】答案見解析【分析】先求得SKIPIF1<0,結(jié)合SKIPIF1<0和SKIPIF1<0討論SKIPIF1<0的正負(fù),進(jìn)而求解.【詳解】函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),對(duì)任意的SKIPIF1<0,SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,無增區(qū)間;②當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0;綜上所述,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,無增區(qū)間;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若不等式SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】SKIPIF1<0即為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,求出函數(shù)SKIPIF1<0的導(dǎo)函數(shù),分解SKIPIF1<0和SKIPIF1<0討論函數(shù)SKIPIF1<0的單調(diào)性,求出函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值,即可得解.【詳解】解:由已知可得SKIPIF1<0即為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),顯然SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上也成立,所以SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,于是,存在SKIPIF1<0,使得SKIPIF1<0,不滿足SKIPIF1<0,舍去此情況,綜上所述,SKIPIF1<0.故選:A.2.(2023秋·四川宜賓·高三四川省宜賓市第四中學(xué)校??计谀┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0有四個(gè)不同的零點(diǎn),則a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】討論SKIPIF1<0、SKIPIF1<0,應(yīng)用導(dǎo)數(shù)研究單調(diào)性,要使SKIPIF1<0有四個(gè)不同的解,即當(dāng)兩個(gè)區(qū)間均存在兩個(gè)零點(diǎn)時(shí),求a的范圍即可.【詳解】由題意知:SKIPIF1<0有四個(gè)不同的零點(diǎn),∴SKIPIF1<0,則SKIPIF1<0有四個(gè)不同的解,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,其零點(diǎn)情況如下:1)當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),有SKIPIF1<0;2)當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則有如下情況:1)當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0單調(diào)遞增,不可能出現(xiàn)兩個(gè)零點(diǎn),不合題意;2)當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞增,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0單調(diào)遞減,而SKIPIF1<0有SKIPIF1<0,SKIPIF1<0有SKIPIF1<0,所以只需SKIPIF1<0,得SKIPIF1<0時(shí),SKIPIF1<0必有兩個(gè)零點(diǎn).∴綜上,有SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0、SKIPIF1<0上各有兩個(gè)零點(diǎn),即共有四個(gè)不同的零點(diǎn).故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:應(yīng)用分類討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求在滿足零點(diǎn)個(gè)數(shù)的情況下參數(shù)范圍.二、填空題3.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】SKIPIF1<0,則易得出SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,與SKIPIF1<0矛盾,故SKIPIF1<0,求出函數(shù)的導(dǎo)函數(shù),對(duì)SKIPIF1<0進(jìn)行討論,判斷函數(shù)的單調(diào)性,從而可得出答案.【詳解】解:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,這與SKIPIF1<0矛盾,故SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0符合題意;若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,故當(dāng)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,這與SKIPIF1<0矛盾,綜上所述SKIPIF1<0.故答案為:SKIPIF1<0.三、解答題4.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.討論SKIPIF1<0的單調(diào)性;【答案】答案見解析【分析】對(duì)函數(shù)求導(dǎo),注意定義域,討論SKIPIF1<0、SKIPIF1<0研究導(dǎo)數(shù)的符號(hào),進(jìn)而確定區(qū)間單調(diào)性.【詳解】由題設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;5.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】答案見解析【分析】求出導(dǎo)函數(shù)SKIPIF1<0,分類討論,由SKIPIF1<0得增區(qū)間,由SKIPIF1<0得減區(qū)間.【詳解】∵SKIPIF1<0,SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,(2)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0上單調(diào)遞減,綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減6.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.討論SKIPIF1<0在SKIPIF1<0上的單調(diào)性;【答案】答案見解析【分析】討論SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況,結(jié)合導(dǎo)數(shù)得出SKIPIF1<0在SKIPIF1<0上的單調(diào)性;【詳解】由題意得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②若SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增7.(2023·全國(guó)·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】見解析【分析】由題求導(dǎo)得SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,三種情況討論其單調(diào)性即可.【詳解】由題知,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以求導(dǎo)得SKIPIF1<0,若SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,若SKIPIF1<0,恒有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),因此函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,若SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.8.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.討論函數(shù)SKIPIF1<0的單調(diào)性;【答案】答案見解析【分析】先求出函數(shù)的定義域,再求導(dǎo),分SKIPIF1<0和SKIPIF1<0兩種情況討論,即可得解.【詳解】由SKIPIF1<0,可知定義域SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0成立,即SKIPIF1<0成立,所以SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0變化時(shí),SKIPIF1<0,SKIPIF1<0的變化情況如下表SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0+0-0+SKIPIF1<0↗極大值↘極小值↗所以SKIPIF1<0的增區(qū)間為SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,減區(qū)間為SKIPIF1<0,綜上,當(dāng)SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度水利工程設(shè)施拆除與生態(tài)恢復(fù)合同
- 2025年度教師知識(shí)產(chǎn)權(quán)保護(hù)與聘用合同
- 2025年度公建房屋租賃與智慧照明系統(tǒng)合同
- 2025年度地下綜合管廊工程承包合同書模板
- 2025年度環(huán)保污水處理設(shè)備供應(yīng)合同范本
- 2025年度能源行業(yè)競(jìng)業(yè)限制及合作開發(fā)協(xié)議合同
- 2025年度木結(jié)構(gòu)建筑工程承包合同協(xié)議書
- 果樹承包解除合同書
- 2025年度數(shù)字營(yíng)銷廣告投放執(zhí)行合同
- 2025年度礦山尾礦庫安全監(jiān)測(cè)與維護(hù)總承包服務(wù)合同
- (八省聯(lián)考)云南省2025年普通高校招生適應(yīng)性測(cè)試 物理試卷(含答案解析)
- 春節(jié)節(jié)后安全教育培訓(xùn)
- 2025年新高考數(shù)學(xué)一輪復(fù)習(xí)第5章重難點(diǎn)突破02向量中的隱圓問題(五大題型)(學(xué)生版+解析)
- 印刷品質(zhì)量保證協(xié)議書
- 2023年浙江省公務(wù)員錄用考試《行測(cè)》題(A類)
- CQI-23模塑系統(tǒng)評(píng)估審核表-中英文
- 南方日?qǐng)?bào)圖片管理系統(tǒng)開發(fā)項(xiàng)目進(jìn)度管理研究任務(wù)書
- 《建筑工程設(shè)計(jì)文件編制深度規(guī)定》(2022年版)
- 我國(guó)大型成套設(shè)備出口現(xiàn)狀、發(fā)展前景及政策支持研究
- 河南省鄭州市2023-2024學(xué)年高一下學(xué)期6月期末數(shù)學(xué)試題(無答案)
- 七年級(jí)數(shù)學(xué)垂線1
評(píng)論
0/150
提交評(píng)論