版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.2.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要3.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.4.下列函數(shù)中,值域為R且為奇函數(shù)的是()A. B. C. D.5.設(shè)i為虛數(shù)單位,若復數(shù),則復數(shù)z等于()A. B. C. D.06.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內(nèi)一點,則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.58.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.9.已知復數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.10.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.11.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.12.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)據(jù)的標準差為_____.14.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)15.在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____.16.函數(shù)的定義域是____________.(寫成區(qū)間的形式)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.18.(12分)已知實數(shù)x,y,z滿足,證明:.19.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.20.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.21.(12分)某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:123456758810141517(1)經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取600元購物券;抽中“二等獎”可領(lǐng)取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學期望.參考公式:,,,.22.(10分)已知函數(shù)(1)若恒成立,求實數(shù)的取值范圍;(2)若方程有兩個不同實根,,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力。2、B【解析】
由線面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.3、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數(shù)運算,屬于基礎(chǔ)題.4、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數(shù),排除;B.,值域為,奇函數(shù),排除;C.,值域為,奇函數(shù),滿足;D.,值域為,非奇非偶函數(shù),排除;故選:.【點睛】本題考查了函數(shù)的值域和奇偶性,意在考查學生對于函數(shù)知識的綜合應用.5、B【解析】
根據(jù)復數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復數(shù)的代數(shù)運算,屬于基礎(chǔ)題.6、D【解析】
設(shè),由,得,利用復數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.7、A【解析】
根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.8、B【解析】
由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.9、A【解析】
對復數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數(shù)的四則運算及虛部的概念,計算過程要注意.10、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.11、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.12、A【解析】
函數(shù)的零點就是方程的解,設(shè),方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學生分析問題解決問題的能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先計算平均數(shù)再求解方差與標準差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎(chǔ)題.14、①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.15、3【解析】
設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0),聯(lián)立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【詳解】設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(0,1),∴B的坐標為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當且僅當,即t時,△ABC的面積S有最大值為.解之得a=3或a.∵a時,t2不符合題意,∴a=3.故答案為:3.【點睛】本題考查了橢圓內(nèi)三角形面積的最值問題,意在考查學生的計算能力和轉(zhuǎn)化能力.16、【解析】
要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)設(shè),求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達定理得,設(shè),利用三點共線,求得,然后驗證即可.【詳解】解:(1)設(shè),則,所以,因為.所以當時,值最小,所以,解得,(舍負)所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應用韋達定理,得出,再代入題中需要計算可證明的式子參與化簡變形.18、見解析【解析】
已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應用,屬于基礎(chǔ)題.19、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標系,則,,,設(shè)平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.20、(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】
(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標系:假設(shè)在上存在一點使直線與平面所成角的正弦值為,且,,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點,∴,又∵平面平面,且平面平面,∴平面,取的中點,連結(jié),則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,,則,假設(shè)在上存在一點使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024瀝青采購合同
- 2023-2024學年人教版(2015)小學信息技術(shù)四年級下冊文字處理初嘗試(說課稿)
- 2024某影視公司與某廣告公司關(guān)于影視植入廣告服務(wù)的合同
- 1 《沁園春·長沙》 (說課稿)-2024-2025學年高一語文同步說課稿與知識梳理(統(tǒng)編版必修上冊)
- 5G網(wǎng)絡(luò)建設(shè)與優(yōu)化協(xié)議
- 2024年革新版:基于VR技術(shù)的虛擬物流培訓服務(wù)合同
- 2024陜西餐飲業(yè)勞動合同范本及服務(wù)條款3篇
- 2《學會溝通交流》第1課時說課稿-2024-2025學年道德與法治五年級上冊統(tǒng)編版
- 11變廢為寶有妙招(說課稿)-部編版道德與法治四年級上冊
- 2025年度文化產(chǎn)業(yè)融合發(fā)展合同補充協(xié)議3篇
- 三年級數(shù)學寒假作業(yè)每日一練30天
- 二年級數(shù)學上冊100道口算題大全 (每日一套共26套)
- 物流無人機垂直起降場選址與建設(shè)規(guī)范
- 蔬菜供貨服務(wù)保障方案
- WordA4信紙(A4橫條直接打印版)
- 吹塑成型技術(shù)
- 線路巡視試題
- 藥品庫存清單(2015年)
- 上海市臨床營養(yǎng)質(zhì)控手冊范本
- 中學生核心素養(yǎng)中學生天文科技素養(yǎng)調(diào)查研究報告
- 部分常用巖土經(jīng)驗值
評論
0/150
提交評論