新高考一輪復(fù)習(xí)導(dǎo)學(xué)案第62講 直線與圓的位置關(guān)系(解析版)_第1頁(yè)
新高考一輪復(fù)習(xí)導(dǎo)學(xué)案第62講 直線與圓的位置關(guān)系(解析版)_第2頁(yè)
新高考一輪復(fù)習(xí)導(dǎo)學(xué)案第62講 直線與圓的位置關(guān)系(解析版)_第3頁(yè)
新高考一輪復(fù)習(xí)導(dǎo)學(xué)案第62講 直線與圓的位置關(guān)系(解析版)_第4頁(yè)
新高考一輪復(fù)習(xí)導(dǎo)學(xué)案第62講 直線與圓的位置關(guān)系(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第62講直線與圓的位置關(guān)系1、直線與圓的位置關(guān)系(1)三種位置關(guān)系:相交、相切、相離.相離相切相交圖形量化方程觀點(diǎn)Δeq\a\vs4\al(<)0Δeq\a\vs4\al(=)0Δeq\a\vs4\al(>)0幾何觀點(diǎn)deq\a\vs4\al(>)rdeq\a\vs4\al(=)rdeq\a\vs4\al(<)r(2)圓的切線方程的常用結(jié)論①過(guò)圓x2+y2=r2上一點(diǎn)P(x0,y0)的圓的切線方程為x0x+y0y=r2;②過(guò)圓(x-a)2+(y-b)2=r2上一點(diǎn)P(x0,y0)的圓的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2;③過(guò)圓x2+y2=r2外一點(diǎn)M(x0,y0)作圓的兩條切線,則兩切點(diǎn)所在直線方程為x0x+y0y=r2.1、(2023?新高考Ⅰ)過(guò)點(diǎn)SKIPIF1<0與圓SKIPIF1<0相切的兩條直線的夾角為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】SKIPIF1<0【解析】圓SKIPIF1<0可化為SKIPIF1<0,則圓心SKIPIF1<0,半徑為SKIPIF1<0;設(shè)SKIPIF1<0,切線為SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:SKIPIF1<0.2、(2022?北京)若直線SKIPIF1<0是圓SKIPIF1<0的一條對(duì)稱軸,則SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】SKIPIF1<0【解析】圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0是圓SKIPIF1<0的一條對(duì)稱軸,SKIPIF1<0圓心在直線SKIPIF1<0上,可得SKIPIF1<0,即SKIPIF1<0.故選:SKIPIF1<0.3、(多選題)(2021?新高考Ⅱ)已知直線SKIPIF1<0與圓SKIPIF1<0,點(diǎn)SKIPIF1<0,則下列說(shuō)法正確的是SKIPIF1<0SKIPIF1<0A.若點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,則直線SKIPIF1<0與圓SKIPIF1<0相切 B.若點(diǎn)SKIPIF1<0在圓SKIPIF1<0外,則直線SKIPIF1<0與圓SKIPIF1<0相離 C.若點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則直線SKIPIF1<0與圓SKIPIF1<0相切 D.若點(diǎn)SKIPIF1<0在圓SKIPIF1<0內(nèi),則直線SKIPIF1<0與圓SKIPIF1<0相離【答案】SKIPIF1<0【解析】SKIPIF1<0中,若SKIPIF1<0在圓上,則SKIPIF1<0,而圓心到直線SKIPIF1<0的距離SKIPIF1<0,所以直線與圓相切,即SKIPIF1<0正確;SKIPIF1<0中,點(diǎn)SKIPIF1<0在圓SKIPIF1<0外,則SKIPIF1<0,而圓心到直線SKIPIF1<0的距離SKIPIF1<0,所以直線SKIPIF1<0與圓相交,所以SKIPIF1<0不正確;SKIPIF1<0中,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0,而圓心到直線SKIPIF1<0的距離SKIPIF1<0,所以直線SKIPIF1<0與圓相切,所以SKIPIF1<0正確;SKIPIF1<0中,點(diǎn)SKIPIF1<0在圓SKIPIF1<0內(nèi),則SKIPIF1<0,而圓心到直線SKIPIF1<0的距離SKIPIF1<0,所以直線SKIPIF1<0與圓相離,所以SKIPIF1<0正確;故選:SKIPIF1<0.4、(2022?甲卷(理))若雙曲線SKIPIF1<0的漸近線與圓SKIPIF1<0相切,則SKIPIF1<0.【答案】SKIPIF1<0.【解析】雙曲線SKIPIF1<0的漸近線:SKIPIF1<0,圓SKIPIF1<0的圓心SKIPIF1<0與半徑1,雙曲線SKIPIF1<0的漸近線與圓SKIPIF1<0相切,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0舍去.故答案為:SKIPIF1<0.5、(2022?新高考Ⅱ)設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,若直線SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的直線與圓SKIPIF1<0有公共點(diǎn),則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0,SKIPIF1<0.【解析】點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的直線的斜率為:SKIPIF1<0,所以對(duì)稱直線方程為:SKIPIF1<0,即:SKIPIF1<0,SKIPIF1<0的圓心SKIPIF1<0,半徑為1,所以SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<06、【2020年新課標(biāo)1卷文科】已知圓SKIPIF1<0,過(guò)點(diǎn)(1,2)的直線被該圓所截得的弦的長(zhǎng)度的最小值為(

)A.1 B.2C.3 D.4【答案】B【解析】【分析】當(dāng)直線和圓心與點(diǎn)SKIPIF1<0的連線垂直時(shí),所求的弦長(zhǎng)最短,即可得出結(jié)論.【詳解】圓SKIPIF1<0化為SKIPIF1<0,所以圓心SKIPIF1<0坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)過(guò)點(diǎn)SKIPIF1<0的直線和直線SKIPIF1<0垂直時(shí),圓心到過(guò)點(diǎn)SKIPIF1<0的直線的距離最大,所求的弦長(zhǎng)最短,此時(shí)SKIPIF1<0根據(jù)弦長(zhǎng)公式得最小值為SKIPIF1<0.故選:B.7、【2021年新高考2卷】已知直線SKIPIF1<0與圓SKIPIF1<0,點(diǎn)SKIPIF1<0,則下列說(shuō)法正確的是(

)A.若點(diǎn)A在圓C上,則直線l與圓C相切 B.若點(diǎn)A在圓C內(nèi),則直線l與圓C相離C.若點(diǎn)A在圓C外,則直線l與圓C相離 D.若點(diǎn)A在直線l上,則直線l與圓C相切【答案】ABD【解析】圓心SKIPIF1<0到直線l的距離SKIPIF1<0,若點(diǎn)SKIPIF1<0在圓C上,則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相切,故A正確;若點(diǎn)SKIPIF1<0在圓C內(nèi),則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相離,故B正確;若點(diǎn)SKIPIF1<0在圓C外,則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相交,故C錯(cuò)誤;若點(diǎn)SKIPIF1<0在直線l上,則SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,直線l與圓C相切,故D正確.故選:ABD.1、直線l:x-y+1=0與圓C:x2+y2-4x-2y+1=0的位置關(guān)系是()A.相離B.相切C.相交且過(guò)圓心D.相交但不過(guò)圓心【答案】D【解析】將圓C的方程化為標(biāo)準(zhǔn)方程,得(x-2)2+(y-1)2=4,圓心為(2,1),半徑為2,圓心到直線l的距離為eq\f(|2-1+1|,\r(2))=eq\r(2)<2,所以直線l與圓相交.又圓心不在直線l上,所以直線不過(guò)圓心.2、直線SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0的值是A.-2或12B.2或-12C.-2或-12D.2或12【答案】D【解析】圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.3、直線x-eq\r(3)y=0截圓(x-2)2+y2=4所得劣弧所對(duì)的圓心角是()A.eq\f(π,6)B.eq\f(π,3)C.eq\f(π,2)D.eq\f(2π,3)【答案】:D【解析】:畫(huà)出圖形,如圖,圓心(2,0)到直線的距離為d=eq\f(|2|,\r(12+(\r(3))2))=1,∴sin∠AOC=eq\f(d,OC)=eq\f(1,2),∴∠AOC=eq\f(π,6),∴∠CAO=eq\f(π,6),∴∠ACO=π-eq\f(π,6)-eq\f(π,6)=eq\f(2π,3).故選D.4、過(guò)點(diǎn)P(2,4)作圓(x-1)2+(y-1)2=1的切線,則切線方程為()A.3x+4y-4=0B.4x-3y+4=0C.x=2或4x-3y+4=0D.y=4或3x+4y-4=0【答案】C【解析】當(dāng)斜率不存在時(shí),直線x=2與圓相切;當(dāng)斜率存在時(shí),設(shè)切線方程為y-4=k(x-2),即kx-y+4-2k=0,則eq\f(|k-1+4-2k|,\r(k2+1))=1,解得k=eq\f(4,3),得切線方程為4x-3y+4=0.綜上,得切線方程為x=2或4x-3y+4=0.考向一直線與圓的位置關(guān)系例1、直線kx-y+2-k=0與圓x2+y2-2x-8=0的位置關(guān)系為()A.相交、相切或相離B.相交或相切C.相交D.相切【答案】C【解析】方法一直線kx-y+2-k=0的方程可化為k(x-1)-(y-2)=0,該直線恒過(guò)定點(diǎn)(1,2).因?yàn)?2+22-2×1-8<0,所以點(diǎn)(1,2)在圓x2+y2-2x-8=0的內(nèi)部,所以直線kx-y+2-k=0與圓x2+y2-2x-8=0相交.方法二圓的方程可化為(x-1)2+y2=32,所以圓的圓心為(1,0),半徑為3.圓心到直線kx-y+2-k=0的距離為eq\f(|k+2-k|,\r(1+k2))=eq\f(2,\r(1+k2))≤2<3,所以直線與圓相交變式1、已知直線l:y=kx+1,圓C:(x-1)2+(y+1)2=12.試證明:不論k為何實(shí)數(shù),直線l和圓C總有兩個(gè)交點(diǎn).【解析】由題意,得不論k為何實(shí)數(shù),直線l總過(guò)點(diǎn)P(0,1),圓C的圓心C(1,-1),半徑R=2eq\r(3).又PC=eq\r(5)<2eq\r(3)=R,所以點(diǎn)P(0,1)在圓C的內(nèi)部,即不論k為何實(shí)數(shù),直線l總經(jīng)過(guò)圓C內(nèi)部的定點(diǎn)P,所以不論k為何實(shí)數(shù),直線l和圓C總有兩個(gè)交點(diǎn).變式2、(2022年廣東省廣州大學(xué)附屬中學(xué)高三模擬試卷)已知SKIPIF1<0是圓SKIPIF1<0內(nèi)一點(diǎn),現(xiàn)有以SKIPIF1<0為中點(diǎn)的弦所在直線SKIPIF1<0和直線SKIPIF1<0,則()A.SKIPIF1<0且SKIPIF1<0與圓相交 B.SKIPIF1<0且SKIPIF1<0與圓相離C.SKIPIF1<0且SKIPIF1<0與圓相離 D.SKIPIF1<0且SKIPIF1<0與圓相交【答案】C【解析】【詳解】由SKIPIF1<0可知,以SKIPIF1<0為中點(diǎn)弦所在直線SKIPIF1<0的斜率為SKIPIF1<0則直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程可化為SKIPIF1<0由SKIPIF1<0可知,SKIPIF1<0圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0因?yàn)镾KIPIF1<0是圓SKIPIF1<0內(nèi)一點(diǎn),所以SKIPIF1<0,即SKIPIF1<0故直線SKIPIF1<0與圓相離故選:C方法總結(jié):判斷直線與圓的位置關(guān)系的常見(jiàn)方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過(guò)定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中最常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動(dòng)直線問(wèn)題.考向二圓的弦長(zhǎng)問(wèn)題例2、(1)直線y=kx-1與圓C:(x+3)2+(y-3)2=36相交于A,B兩點(diǎn),則|AB|的最小值為()A.6 B.2eq\r(11)C.12 D.16【答案】B【解析】因?yàn)橹本€y=kx-1過(guò)定點(diǎn)(0,-1),故圓C的圓心C(-3,3)到直線y=kx-1的距離的最大值為eq\r(-3-02+3+12)=5.又圓C的半徑為6,故弦長(zhǎng)|AB|的最小值為2eq\r(62-52)=2eq\r(11).(2)設(shè)圓x2+y2-2x-2y-2=0的圓心為C,直線l過(guò)(0,3)與圓C交于A,B兩點(diǎn),若|AB|=2eq\r(3),則直線l的方程為()A.3x+4y-12=0或4x-3y+9=0B.3x+4y-12=0或x=0C.4x-3y+9=0或x=0D.3x-4y+12=0或4x+3y+9=0【答案】B【解析】當(dāng)直線l的斜率不存在,即直線l的方程為x=0時(shí),弦長(zhǎng)為2eq\r(3),符合題意;當(dāng)直線l的斜率存在時(shí),可設(shè)直線l的方程為y=kx+3,由弦長(zhǎng)為2eq\r(3),半徑為2可知,圓心到該直線的距離為1,從而有eq\f(|k+2|,\r(k2+1))=1,解得k=-eq\f(3,4),綜上,直線l的方程為x=0或3x+4y-12=0.變式1、(1)(2022·河北保定·高三期末)若SKIPIF1<0為圓SKIPIF1<0的弦SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0的方程為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】圓SKIPIF1<0的圓心為SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0.故選:A(2)(2022·河北張家口·高三期末)直線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,圓SKIPIF1<0的半徑為SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,故選:B.變式2、(1)(2022年廣東省高三模擬試卷)若斜率為SKIPIF1<0的直線與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,與圓SKIPIF1<0相交于點(diǎn)SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【解析】【詳解】設(shè)點(diǎn)SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0的半徑為2,故弦SKIPIF1<0的弦心距為SKIPIF1<0,即圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,故答案為:SKIPIF1<0.(2)(2022·山東煙臺(tái)·高三期末)若直線SKIPIF1<0將圓SKIPIF1<0分成的兩段圓弧長(zhǎng)度之比為1:3,則實(shí)數(shù)a的值為()A.﹣4 B.﹣4或2 C.2 D.﹣2或4【答案】D【解析】圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,圓心為SKIPIF1<0,半徑SKIPIF1<0,設(shè)直線和圓相交于AB,由較短弧長(zhǎng)與較長(zhǎng)弧長(zhǎng)之比為1:3,則SKIPIF1<0,故SKIPIF1<0,則圓心到直線SKIPIF1<0的距離SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或4,故選:D.方法總結(jié):弦長(zhǎng)的兩種求法(1)代數(shù)方法:將直線和圓的方程聯(lián)立方程組,消元后得到一個(gè)一元二次方程.在判別式Δ>0的前提下,利用根與系數(shù)的關(guān)系,根據(jù)弦長(zhǎng)公式求弦長(zhǎng).(2)幾何方法:若弦心距為d,圓的半徑長(zhǎng)為r,則弦長(zhǎng)l=2eq\r(r2-d2).考向三圓的切線問(wèn)題例3已知點(diǎn)P(eq\r(2)+1,2-eq\r(2)),點(diǎn)M(3,1),圓C:(x-1)2+(y-2)2=4.(1)求過(guò)點(diǎn)P的圓C的切線方程;(2)求過(guò)點(diǎn)M的圓C的切線方程,并求出切線長(zhǎng).【解析】(1)由題意,得圓心C(1,2),半徑r=2.因?yàn)?eq\r(2)+1-1)2+(2-eq\r(2)-2)2=4,所以點(diǎn)P在圓C上.又kPC=eq\f(2-\r(2)-2,\r(2)+1-1)=-1,所以切線的斜率為-eq\f(1,kPC)=1,所以過(guò)點(diǎn)P的圓C的切線方程是y-(2-eq\r(2))=x-(eq\r(2)+1),即x-y+1-2eq\r(2)=0.(2)因?yàn)?3-1)2+(1-2)2=5>4,所以點(diǎn)M在圓C外部.當(dāng)過(guò)點(diǎn)M的直線斜率不存在時(shí),直線方程為x=3,即x-3=0,滿足題意;當(dāng)切線的斜率存在時(shí),設(shè)切線方程為y-1=k(x-3),即kx-y+1-3k=0,則圓心C到切線的距離d=eq\f(|k-2+1-3k|,\r(k2+1))=2,解得k=eq\f(3,4),所以切線方程為y-1=eq\f(3,4)(x-3),即3x-4y-5=0.綜上所述,過(guò)點(diǎn)M的圓C的切線方程為x-3=0或3x-4y-5=0.因?yàn)镸C=eq\r((3-1)2+(1-2)2)=eq\r(5),所以過(guò)點(diǎn)M的圓C的切線長(zhǎng)為eq\r(MC2-r2)=eq\r(5-4)=1.變式1、(多選題)(2022·山東省淄博實(shí)驗(yàn)中學(xué)高三期末)在平面直角坐標(biāo)系SKIPIF1<0中,過(guò)直線SKIPIF1<0上任一點(diǎn)SKIPIF1<0做圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,則下列說(shuō)法正確的是()A.四邊形SKIPIF1<0為正方形時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0B.四邊形SKIPIF1<0面積的最小值為1C.SKIPIF1<0不可能為鈍角D.當(dāng)SKIPIF1<0為等邊三角形時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0【答案】ABC【解析】解:對(duì)A:設(shè)SKIPIF1<0,由題意,四邊形SKIPIF1<0為正方形時(shí),SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,選項(xiàng)A正確;對(duì)B:四邊形SKIPIF1<0面積SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選項(xiàng)B正確;對(duì)C:由題意,SKIPIF1<0,在直角三角形SKIPIF1<0中,SKIPIF1<0,由選項(xiàng)B知SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0為銳角,所以SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)C正確;對(duì)D:當(dāng)SKIPIF1<0為等邊三角形時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0,故選項(xiàng)D錯(cuò)誤;故選:ABC.方法總結(jié):求圓的切線方程應(yīng)注意的問(wèn)題求過(guò)某點(diǎn)的圓的切線問(wèn)題時(shí),應(yīng)首先確定點(diǎn)與圓的位置關(guān)系,再求切線方程.若點(diǎn)在圓上(即為切點(diǎn)),則過(guò)該點(diǎn)的切線只有一條;若點(diǎn)在圓外,則過(guò)該點(diǎn)的切線有兩條,此時(shí)應(yīng)注意斜率不存在的切線.1、(2022·廣東清遠(yuǎn)·高三期末)直線SKIPIF1<0被圓SKIPIF1<0截得的最短弦長(zhǎng)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】將圓化為一般方程為SKIPIF1<0,因此可知圓C的圓心為SKIPIF1<0,半徑為4,因?yàn)橹本€l過(guò)定點(diǎn)SKIPIF1<0,所以當(dāng)圓心到直線l的距離為SKIPIF1<0時(shí),直線l被圓C截得的弦長(zhǎng)最短,且最短弦長(zhǎng)為SKIPIF1<0.故選:D2、(2022·湖北省鄂州高中高三期末)已知圓:SKIPIF1<0,過(guò)直線SKIPIF1<0:SKIPIF1<0上的一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的一條切線,切點(diǎn)為SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】圓SKIPIF1<0:SKIPIF1<0中,圓心SKIPIF1<0,半徑SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立)故選:A3、(2022·山東青島·高三期末)已知圓SKIPIF1<0截直線SKIPIF1<0所得弦的長(zhǎng)度為4,則實(shí)數(shù)a的值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題知圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,則圓心坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0,SKIPIF1<0圓SKIPIF1<0截直線SKIPIF1<0所得弦的長(zhǎng)度為4,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.故選:C.4、(2022·山東德州·高三期末)已知圓O:SKIPIF1<0,直線l:SKIPIF1<0與兩坐標(biāo)軸交點(diǎn)分別為M,N,當(dāng)直線l被圓O截得的弦長(zhǎng)最小時(shí),SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】∵直線l:SKIPIF1<0,即SKIPIF1<0,∴直線恒過(guò)定點(diǎn)SKIPIF1<0,又圓O:SKIPIF1<0,∴由圓的性質(zhì)可知直線SKIPIF1<0時(shí),直線l被圓O截得的弦長(zhǎng)最小,此時(shí)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由直線l:SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.故選:C.5、(清遠(yuǎn)市高三期末試題)已知P,Q為圓SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,且SKIPIF1<0,則坐標(biāo)原點(diǎn)О到直線PQ的距離的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【解析】設(shè)SKIPIF1<0的中點(diǎn)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0點(diǎn)的軌跡是以SKIPIF1<0為圓心,半徑為SKIPIF1<0的圓.則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最大值為SKIPIF1<0.故選:C6、(多選題)(2022·江蘇海安·高三期末)關(guān)于直線SKIPIF1<0與圓SKIPIF1<0,下列說(shuō)法正確的是()A.若SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0為定值B.若SKIPIF1<0,則SKIPIF1<0被圓SKIPIF1<0截得的弦長(zhǎng)為定值C.若SKIPIF1<0與圓SKIPIF1<0有公共點(diǎn),則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0與圓SKIPIF1<0相交【答案】BCD【解析】圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0.對(duì)于A選項(xiàng),若SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0,可得SKIPIF1<0,A錯(cuò);對(duì)于B選項(xiàng),若SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,此時(shí)SKIPIF1<0被圓SKIPIF1<0截得的弦長(zhǎng)為SKIPIF1<0,B對(duì);對(duì)于C選項(xiàng),若SKIPIF1<0與圓SKIPIF1<0有公共點(diǎn),則SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,C對(duì);對(duì)于D選項(xiàng),當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即直線SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,SKIPIF1<0,即點(diǎn)SKIPIF1<0在圓SKIPIF1<0內(nèi),故直線SKIPIF1<0與圓SKIPIF1<0相交,D對(duì).故選:BCD.7、(多選題)(2022年重慶市巴蜀中學(xué)高三模擬試卷)古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn)如下結(jié)論:“平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之比為定值SKIPIF1<0的點(diǎn)的軌跡是圓”.在平面直角坐標(biāo)系中,已知點(diǎn)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的軌跡為圓SKIPIF1<0,點(diǎn)SKIPIF1<0為圓心,則下列說(shuō)法正確的是()A.圓SKIPIF1<0的方程為SKIPIF1<0B.直線SKIPIF1<0與圓SKIPIF

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論