版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
-PAGE1-江蘇省無錫市江陰市要塞片2016-2017學(xué)年八年級(jí)(上)期中數(shù)學(xué)試卷一、選擇題:(本大題共10小題,每小題3分,共30分.)1.下面的圖形都是常見的安全標(biāo)記,其中是軸對稱圖形的是()A. B. C. D.2.下列每一組數(shù)據(jù)中的三個(gè)數(shù)值分別為三角形的三邊長,不能構(gòu)成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、 D.5、12、133.如圖,△ABC中,AB=AC,D是BC中點(diǎn),下列結(jié)論中不正確的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD4.如果等腰三角形兩邊長是6cm和3A.9cm B.12cm C.15cm或12cm5.在△ABC中,①若AB=BC=CA,則△ABC為等邊三角形;②若∠A=∠B=∠C,則△ABC為等邊三角形;③有兩個(gè)角都是60°的三角形是等邊三角形;④一個(gè)角為60°的等腰三角形是等邊三角形.上述結(jié)論中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6.到三角形三邊的距離都相等的點(diǎn)是三角形的()A.三條角平分線的交點(diǎn) B.三條邊的中線的交點(diǎn)C.三條高的交點(diǎn) D.三條邊的垂直平分線的交點(diǎn)7.如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA8.如圖,將一張長方形紙片沿EF折疊后,點(diǎn)A、B分別落在A′、B′的位置,如果∠1=56°,那么∠2的度數(shù)是()A.56° B.58° C.66° D.68°9.如圖,D為△ABC邊BC上一點(diǎn),AB=AC,且BF=CD,CE=BD,則∠EDF等于()A.90°﹣∠A B.90°﹣∠A C.180°﹣∠A D.45°﹣∠A10.如圖,已知長方形ABCD的邊長AB=16cm,BC=12cm,點(diǎn)E在邊AB上,AE=6cm,如果點(diǎn)P從點(diǎn)B出發(fā)在線段BC上以2cm/s的速度向點(diǎn)C向運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由點(diǎn)D向C點(diǎn)運(yùn)動(dòng).則當(dāng)△BPE與△A.1s B.3s C.1s或3s D.2s或3s二、填空題:(本大題共8小題,每空2分,共16分)11.等邊三角形是一個(gè)軸對稱圖形,它有條對稱軸.12.△ABC是等腰三角形,若∠A=80°,則∠B=.13.一個(gè)直角三角形的兩邊長為3和5,則第三邊為.14.若直角三角形斜邊上的高和中線長分別是4cm,5cm,則它的面積是cm15.已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的面積分別4cm2和15cm2,則正方形③的面積為16.如圖,△ABC的邊BC的垂直平分線MN交AC于D,若△ADB的周長是10cm,AB=4cm,則AC=17.如圖,在△ABC中,BC=AC,∠C=90°,AD平分∠CAB,DE⊥AB,垂足為點(diǎn)E,AB=10cm.那么△BDE的周長是cm18.如圖,在△ABC中,AD為∠CAB平分線,BE⊥AD于E,EF⊥AB于F,∠DBE=∠C=15°,AF=2,則BF=.三、解答題(本大題共有8小題,共54分.)19.(6分)如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°,∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.20.(6分)如圖,在每個(gè)小正方形的邊長均為1個(gè)單位長度的方格紙中,有線段AB和直線MN,點(diǎn)A,B,M,N均在小正方形的頂點(diǎn)上.(1)在方格紙中畫四邊形ABCD(四邊形的各頂點(diǎn)均在小正方形的頂點(diǎn)上),使四邊形ABCD是以直線MN為對稱軸的軸對稱圖形,點(diǎn)A的對稱點(diǎn)為點(diǎn)D,點(diǎn)B的對稱點(diǎn)為點(diǎn)C;(2)請直接寫出四邊形ABCD的周長.21.(6分)已知:如圖,點(diǎn)E、C、D、A在同一條直線上,AB∥DF,ED=AB,∠E=∠CPD.求證:△ABC≌△DEF.22.(6分)如圖,在△ABC中,CF⊥AB于F,BE⊥AC于E,M為BC的中點(diǎn),BC=10,EF=4.(1)求△MEF的周長;(2)若∠ABC=50°,∠ACB=60°,求△EFM的三個(gè)內(nèi)角的度數(shù).23.(6分)我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.(1)寫出一種你所知道的特殊四邊形中是勾股四邊形的圖形的名稱.(2)如圖(1),請你在圖中畫出以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊,且對角線相等的所有勾股四邊形OAMB.(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連結(jié)DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.24.(6分)某班圍棋興趣小組的同學(xué)在一次活動(dòng)時(shí),他們用25粒圍棋擺成了如圖1所示的圖案.甲、乙兩人發(fā)現(xiàn)了該圖案的具有以下性質(zhì):甲:這是一個(gè)軸對稱圖形,且有4條對稱軸;乙:這是一個(gè)軸對稱圖形,且每條對稱軸都經(jīng)過5粒棋子.(1)請?jiān)趫D2中去掉4個(gè)棋子,使所得圖形僅保留甲所發(fā)現(xiàn)的性質(zhì).(2)請?jiān)趫D3中去掉4個(gè)棋子,使所得圖形僅保留乙所發(fā)現(xiàn)的性質(zhì).(3)在圖4中,請去掉若干個(gè)棋子(大于0且小于10),使所得圖形仍具有甲、乙兩人所發(fā)現(xiàn)的所有性質(zhì).(圖中用“×”表示去掉的棋子)25.(9分)數(shù)學(xué)課上,李老師出示了如下框中的題目.小敏與同桌小聰討論后,進(jìn)行了如下解答:(1)特殊情況?探索結(jié)論當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:AEDB(填“>”,“<”或“=”).(2)特例啟發(fā),解答題目解:題目中,AE與DB的大小關(guān)系是:AEDB(填“>”,“<”或“=”).理由如下:如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,(請你完成以下解答過程)(3)拓展結(jié)論,設(shè)計(jì)新題在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).26.(9分)已知△ABC中,∠C=90°,AB=10,AC=6,點(diǎn)O是AB的中點(diǎn),將一塊直角三角板的直角頂點(diǎn)與點(diǎn)O重合并將三角板繞點(diǎn)O旋轉(zhuǎn),圖中的M、N分別為直角三角板的直角邊與邊AC、BC的交點(diǎn).(1)如圖①,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),求BN的長.(2)當(dāng)三角板旋轉(zhuǎn)到如圖②所示的位置時(shí),即點(diǎn)M在AC上(不與A、C重合),①猜想圖②中AM2、CM2、CN2、BN2之間滿足的數(shù)量關(guān)系式,并說明理由.②若在三角板旋轉(zhuǎn)的過程中滿足CM=CN,請你直接寫出此時(shí)BN的長.
2016-2017學(xué)年江蘇省無錫市江陰市要塞片八年級(jí)(上)期中數(shù)學(xué)試卷參考答案與試題解析一、選擇題:(本大題共10小題,每小題3分,共30分.)1.下面的圖形都是常見的安全標(biāo)記,其中是軸對稱圖形的是()A. B. C. D.【考點(diǎn)】軸對稱圖形.【分析】根據(jù)軸對稱圖形的概念:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對稱圖形,這條直線叫做對稱軸進(jìn)行分析即可.【解答】解:A、是軸對稱圖形,故此選項(xiàng)正確;B、不是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;C、不是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;D、不是軸對稱圖形,故此選項(xiàng)錯(cuò)誤;故選:A.【點(diǎn)評】此題主要考查了軸對稱圖形,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.2.下列每一組數(shù)據(jù)中的三個(gè)數(shù)值分別為三角形的三邊長,不能構(gòu)成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、 D.5、12、13【考點(diǎn)】勾股定理的逆定理.【分析】欲求證是否為直角三角形,這里給出三邊的長,只要驗(yàn)證兩小邊的平方和等于最長邊的平方即可.【解答】解:A、32+42=52,故是直角三角形,故A選項(xiàng)不符合題意;B、62+82=102,故是直角三角形,故B選項(xiàng)不符合題意;C、()2+22≠()2,故不是直角三角形,故C選項(xiàng)符合題意;D、52+122=132,故是直角三角形,故D選項(xiàng)不符合題意.故選C.【點(diǎn)評】本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.3.如圖,△ABC中,AB=AC,D是BC中點(diǎn),下列結(jié)論中不正確的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考點(diǎn)】等腰三角形的性質(zhì).【分析】此題需對每一個(gè)選項(xiàng)進(jìn)行驗(yàn)證從而求解.【解答】解:∵△ABC中,AB=AC,D是BC中點(diǎn)∴∠B=∠C,(故A正確)AD⊥BC,(故B正確)∠BAD=∠CAD(故C正確)無法得到AB=2BD,(故D不正確).故選:D.【點(diǎn)評】此題主要考查了等腰三角形的性質(zhì),本題關(guān)鍵熟練運(yùn)用等腰三角形的三線合一性質(zhì)4.如果等腰三角形兩邊長是6cm和3A.9cm B.12cm C.15cm或12【考點(diǎn)】等腰三角形的性質(zhì);三角形三邊關(guān)系.【分析】求等腰三角形的周長,即是確定等腰三角形的腰與底的長求周長.根據(jù)三角形三邊關(guān)系定理列出不等式,確定是否符合題意.【解答】解:當(dāng)6為腰,3為底時(shí),6﹣3<6<6+3,能構(gòu)成等腰三角形,周長為6+6+3=15;當(dāng)3為腰,6為底時(shí),3+3=6,不能構(gòu)成三角形.故選D.【點(diǎn)評】本題從邊的方面考查三角形,涉及分類討論的思想方法.求三角形的周長,不能盲目地將三邊長相加起來,而應(yīng)養(yǎng)成檢驗(yàn)三邊長能否組成三角形的好習(xí)慣,把不符合題意的舍去.5.在△ABC中,①若AB=BC=CA,則△ABC為等邊三角形;②若∠A=∠B=∠C,則△ABC為等邊三角形;③有兩個(gè)角都是60°的三角形是等邊三角形;④一個(gè)角為60°的等腰三角形是等邊三角形.上述結(jié)論中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)【考點(diǎn)】等邊三角形的判定.【分析】根據(jù)等邊三角形的判定判斷即可.【解答】解:①根據(jù)等邊三角形的定義可得△ABC為等邊三角形,結(jié)論正確;②根據(jù)判定定理1可得△ABC為等邊三角形,結(jié)論正確;③一個(gè)三角形中有兩個(gè)角都是60°時(shí),根據(jù)三角形內(nèi)角和定理可得第三個(gè)角也是60°,那么這個(gè)三角形的三個(gè)角都相等,根據(jù)判定定理1可得△ABC為等邊三角形,結(jié)論正確;④根據(jù)判定定理2可得△ABC為等邊三角形,結(jié)論正確.故選D.【點(diǎn)評】本題考查了等邊三角形的判定,等邊三角形的判定方法有三種:(1)由定義判定:三條邊都相等的三角形是等邊三角形.(2)判定定理1:三個(gè)角都相等的三角形是等邊三角形.(3)判定定理2:有一個(gè)角是60°的等腰三角形是等邊三角形.注意:在證明一個(gè)三角形是等邊三角形時(shí),若已知或能求得三邊相等則用定義來判定;若已知或能求得三個(gè)角相等則用判定定理1來證明;若已知等腰三角形且有一個(gè)角為60°,則用判定定理2來證明.6.到三角形三邊的距離都相等的點(diǎn)是三角形的()A.三條角平分線的交點(diǎn) B.三條邊的中線的交點(diǎn)C.三條高的交點(diǎn) D.三條邊的垂直平分線的交點(diǎn)【考點(diǎn)】線段垂直平分線的性質(zhì).【分析】由到三角形三邊的距離都相等的點(diǎn)是三角形的三條角平分線的交點(diǎn);到三角形三個(gè)頂點(diǎn)的距離都相等的點(diǎn)是三角形的三條邊的垂直平分線的交點(diǎn).即可求得答案.【解答】解:到三角形三邊的距離都相等的點(diǎn)是三角形的三條角平分線的交點(diǎn).故選A.【點(diǎn)評】此題考查了線段垂直平分線的性質(zhì)以及角平分線的性質(zhì).此題比較簡單,注意熟記定理是解此題的關(guān)鍵.7.如圖,已知∠1=∠2,則不一定能使△ABD≌△ACD的條件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【考點(diǎn)】全等三角形的判定.【分析】利用全等三角形判定定理ASA,SAS,AAS對各個(gè)選項(xiàng)逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意;B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.故選:B.【點(diǎn)評】此題主要考查學(xué)生對全等三角形判定定理的理解和掌握,此題難度不大,屬于基礎(chǔ)題.8.如圖,將一張長方形紙片沿EF折疊后,點(diǎn)A、B分別落在A′、B′的位置,如果∠1=56°,那么∠2的度數(shù)是()A.56° B.58° C.66° D.68°【考點(diǎn)】平行線的性質(zhì);翻折變換(折疊問題).【分析】首先根據(jù)根據(jù)折疊可得∠1=∠EFB′=56°,再求出∠B′FC的度數(shù),然后根據(jù)平行線的性質(zhì)可得∠2=∠B′FC=68°.【解答】解:根據(jù)折疊可得∠1=∠EFB′,∵∠1=56°,∴∠EFB′=56°,∴∠B′FC=180°﹣56°﹣56°=68°,∵AD∥BC,∴∠2=∠B′FC=68°,故選:D.【點(diǎn)評】此題主要考查了平行線的性質(zhì),關(guān)鍵是掌握兩直線平行,同位角相等.9.如圖,D為△ABC邊BC上一點(diǎn),AB=AC,且BF=CD,CE=BD,則∠EDF等于()A.90°﹣∠A B.90°﹣∠A C.180°﹣∠A D.45°﹣∠A【考點(diǎn)】全等三角形的判定與性質(zhì).【分析】由AB=AC,利用等邊對等角得到一對角相等,再由BF=CD,BD=CE,利用SAS得到三角形FBD與三角形DEC全等,利用全等三角形對應(yīng)角相等得到一對角相等,即可表示出∠EDF.【解答】解:∵AB=AC,∴∠B=∠C,在△BFD和△EDC中,,∴△BFD≌△EDC(SAS),∴∠BFD=∠EDC,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣=90°+∠A,則∠EDF=180°﹣(∠FDB+∠EDC)=90°﹣∠A.故選A.【點(diǎn)評】此題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.10.如圖,已知長方形ABCD的邊長AB=16cm,BC=12cm,點(diǎn)E在邊AB上,AE=6cm,如果點(diǎn)P從點(diǎn)B出發(fā)在線段BC上以2cm/s的速度向點(diǎn)C向運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由點(diǎn)D向C點(diǎn)運(yùn)動(dòng).則當(dāng)△BPE與△A.1s B.3s C.1s或3s D.2s或3s【考點(diǎn)】全等三角形的判定.【分析】分別利用:①當(dāng)EB=PC時(shí),△BPE≌△CQP,②當(dāng)BP=CP時(shí),△BEP≌△CQP,進(jìn)而求出即可.【解答】解:①當(dāng)EB=PC時(shí),△BPE≌△CQP,∵AB=16cm,AE=6∴BE=10cm∴PC=10cm∵CB=12cm∴BP=2cm∵點(diǎn)P從點(diǎn)B出發(fā)在線段BC上以2cm/s的速度向點(diǎn)C∴時(shí)間為:2÷2=1s;②當(dāng)BP=CP時(shí),△BEP≌△CQP,設(shè)x秒時(shí),BP=CP,由題意得:2x=12﹣2x,解得:x=3,故選:C.【點(diǎn)評】此題主要考查了全等三角形的性質(zhì),得出對應(yīng)邊關(guān)系是解題關(guān)鍵.二、填空題:(本大題共8小題,每空2分,共16分)11.等邊三角形是一個(gè)軸對稱圖形,它有3條對稱軸.【考點(diǎn)】軸對稱圖形.【分析】根據(jù)軸對稱圖形和對稱軸的概念求解.【解答】解:等邊三角形是一個(gè)軸對稱圖形,它有3條對稱軸.故答案為:3.【點(diǎn)評】本題考查了軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.12.△ABC是等腰三角形,若∠A=80°,則∠B=80°或50°或20°.【考點(diǎn)】等腰三角形的性質(zhì).【分析】此題要分三種情況進(jìn)行討論:①∠C為頂角;②∠A為頂角,∠B為底角;③∠B為頂角,∠A為底角.【解答】解:∵∠A=80°,△ABC是等腰三角形,∴分三種情況;①當(dāng)∠C為頂角時(shí),∠B=∠A=80°;②當(dāng)∠A為頂角時(shí),∠B=(180°﹣80°)÷2=50°;③當(dāng)∠B為頂角時(shí),∠B=180°﹣80°×2=20°;綜上所述:∠B的度數(shù)為80°、50°、20°.故答案為:80°或50°或20°.【點(diǎn)評】此題主要考查了等腰三角形的性質(zhì)、三角形內(nèi)角和定理;熟練掌握等腰三角形的性質(zhì),關(guān)鍵是分三種情況討論,不要漏解.13.一個(gè)直角三角形的兩邊長為3和5,則第三邊為4或.【考點(diǎn)】勾股定理.【分析】題目中告訴的直角三角形的兩邊可能是兩直角邊也可能是一條直角邊和斜邊,因此解決本題時(shí)需要分類討論.【解答】解:當(dāng)3和5是兩直角邊時(shí),第三邊為:=,當(dāng)3和5分別是一條直角邊和斜邊時(shí),第三邊為:=4,故答案為4或.【點(diǎn)評】本題考查了勾股定理的應(yīng)用,但解決本題的關(guān)鍵是根據(jù)兩種不同情況分類討論,學(xué)生們在解題時(shí)很容易忽略掉另一種情況.14.若直角三角形斜邊上的高和中線長分別是4cm,5cm,則它的面積是20c【考點(diǎn)】直角三角形斜邊上的中線;三角形的面積.【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出斜邊,然后根據(jù)三角形的面積公式列式計(jì)算即可得解.【解答】解:∵直角三角形斜邊上中線長5cm∴斜邊=2×5=10cm∴面積=×10×4=20cm2.故答案為:20.【點(diǎn)評】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形的面積,熟記性質(zhì)求出斜邊的長度是解題的關(guān)鍵.15.已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的面積分別4cm2和15cm2,則正方形③的面積為【考點(diǎn)】全等三角形的判定與性質(zhì);勾股定理;正方形的性質(zhì).【分析】根據(jù)正方形的性質(zhì)就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB=∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE2的值,進(jìn)而得出結(jié)論.【解答】解:∵四邊形1、2、3都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC,AB=CD.∵正方形①、②的面積分別4cm2和15cm∴AE2=4,CD2=15.∴AB2=15.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=19,正方形③為19.故答案為:19.【點(diǎn)評】本題考查了正方形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,正方形的面積公式的運(yùn)用,三角形全等的判定及性質(zhì)的運(yùn)用,解答時(shí)證明△ABE≌△CDB是關(guān)鍵.16.如圖,△ABC的邊BC的垂直平分線MN交AC于D,若△ADB的周長是10cm,AB=4cm,則AC=6【考點(diǎn)】線段垂直平分線的性質(zhì).【分析】根據(jù)線段的垂直平分線性質(zhì)得出CD=BD,求出△ADB的周長AD+DB+AB=AC+AB=10cm【解答】解:∵M(jìn)N是線段BC的垂直平分線,∴CD=BD,∵△ADB的周長是10cm∴AD+BD+AB=10cm∴AD+CD+AB=10cm∴AC+AB=10cm∵AB=4cm∴AC=6cm故答案為:6.【點(diǎn)評】本題考查了線段垂直平分線的性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.17.如圖,在△ABC中,BC=AC,∠C=90°,AD平分∠CAB,DE⊥AB,垂足為點(diǎn)E,AB=10cm.那么△BDE的周長是10c【考點(diǎn)】角平分線的性質(zhì);等腰直角三角形.【分析】根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得CD=DE,再根據(jù)角平分線的對稱性可得AC=AE,然后求出△BDE的周長=AB,即可得解.【解答】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∵BC=AC,∴BC=AC=AE,∴△BDE的周長=DE+BD+BE=CD+BD+BE=BC+BE=AE+BE=AB,∵AB=10cm∴△BDE的周長=10cm故答案為:10.【點(diǎn)評】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),等腰直角三角形的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖,最后求出△BDE的周長=AB是解題的關(guān)鍵.18.如圖,在△ABC中,AD為∠CAB平分線,BE⊥AD于E,EF⊥AB于F,∠DBE=∠C=15°,AF=2,則BF=6.【考點(diǎn)】含30度角的直角三角形;等腰三角形的判定與性質(zhì).【分析】先由垂直的定義及三角形內(nèi)角和定理得出∠BDA=75°,根據(jù)三角形外角的性質(zhì)得出∠DAC=60°,再由角平分線定義求得∠BAD=60°,則∠FEA=30°,根據(jù)在直角三角形中,30°角所對的直角邊等于斜邊的一半,得到EF=2,再求出∠FBE=30°,進(jìn)而得出BF=EF=6.【解答】解:∠DBE=15°,∠BED=90°,∴∠BDA=75°,∵∠BDA=∠DAC+∠C,而∠C=15°,∴∠DAC=60°,∵AD為∠CAB平分線,∴∠BAD=∠DAC=60°,∵EF⊥AB于F,∴∠FEA=30°,∵AF=2,∴EF=2,∵∠FEB=60°,∴∠FBE=30°,∴BF=EF=6.故答案為6.【點(diǎn)評】本題考查了垂直的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì),角平分線定義,直角三角形的性質(zhì),綜合性較強(qiáng),難度適中.三、解答題(本大題共有8小題,共54分.)19.如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°,∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.【考點(diǎn)】等腰三角形的判定與性質(zhì).【分析】(1)由AB=AC,根據(jù)等腰三角形的兩底角相等得到∠B=∠C=30°,再根據(jù)三角形的內(nèi)角和定理可計(jì)算出∠BAC=120°,而∠DAB=45°,則∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根據(jù)三角形外角性質(zhì)得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根據(jù)等腰三角形的判定可得DC=AC,這樣即可得到結(jié)論.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)證明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.【點(diǎn)評】本題考查了等腰三角形的性質(zhì)和判定定理:等腰三角形的兩底角相等;有兩個(gè)角相等的三角形為等腰三角形.也考查了三角形的內(nèi)角和定理.20.如圖,在每個(gè)小正方形的邊長均為1個(gè)單位長度的方格紙中,有線段AB和直線MN,點(diǎn)A,B,M,N均在小正方形的頂點(diǎn)上.(1)在方格紙中畫四邊形ABCD(四邊形的各頂點(diǎn)均在小正方形的頂點(diǎn)上),使四邊形ABCD是以直線MN為對稱軸的軸對稱圖形,點(diǎn)A的對稱點(diǎn)為點(diǎn)D,點(diǎn)B的對稱點(diǎn)為點(diǎn)C;(2)請直接寫出四邊形ABCD的周長.【考點(diǎn)】作圖-軸對稱變換;勾股定理.【分析】(1)根據(jù)四邊形ABCD是以直線MN為對稱軸的軸對稱圖形,分別得出對稱點(diǎn)畫出即可;(2)根據(jù)勾股定理求出四邊形ABCD的周長即可.【解答】解;(1)如圖所示:(2)四邊形ABCD的周長為:AB+BC+CD+AD=+2++3=2+5.【點(diǎn)評】此題主要考查了勾股定理以及軸對稱圖形的作法,根據(jù)已知得出A,B點(diǎn)關(guān)于MN的對稱點(diǎn)是解題關(guān)鍵.21.已知:如圖,點(diǎn)E、C、D、A在同一條直線上,AB∥DF,ED=AB,∠E=∠CPD.求證:△ABC≌△DEF.【考點(diǎn)】全等三角形的判定.【分析】首先根據(jù)平行線的性質(zhì)可得∠B=∠CPD,∠A=∠FDE,再由∠E=∠CPD可得∠E=∠B,再利用ASA證明△ABC≌△DEF.【解答】證明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD.∴∠E=∠B,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).【點(diǎn)評】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.22.如圖,在△ABC中,CF⊥AB于F,BE⊥AC于E,M為BC的中點(diǎn),BC=10,EF=4.(1)求△MEF的周長;(2)若∠ABC=50°,∠ACB=60°,求△EFM的三個(gè)內(nèi)角的度數(shù).【考點(diǎn)】直角三角形斜邊上的中線;等腰三角形的判定與性質(zhì).【分析】(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半求出EM、FM,再根據(jù)三角形的周長的定義列式計(jì)算即可得解;(2)根據(jù)等腰三角形兩底角相等求出∠BMF,∠CME,然后根據(jù)平角等于180°列式計(jì)算即可求出∠EMF,再根據(jù)等腰三角形兩底角相等求出另兩個(gè)角即可.【解答】解:(1)∵CF⊥AB,BE⊥AC,M為BC的中點(diǎn),∴EM=BC=5,F(xiàn)M=BC=5,∴△MEF周長=EF+EM+FM=4+5+5=14;(2)∵BM=FM,∠ABC=50°,∴∠MBF=∠MFB=50°,∴∠BMF=180°﹣2×50°=80°,∵CM=EM,∠ACB=60°,∴∠MCE=∠MEC=60°,∴∠CME═180°﹣2×60°=60°,∴∠EMF=180°﹣∠BMF﹣∠CME=40°,∴∠MEF=∠MFE=(180°﹣∠EMF)=70°,∴△MEF的三個(gè)內(nèi)角分別為40°、70°、70°.【點(diǎn)評】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等腰三角形兩底角相等的性質(zhì),平角的定義,是基礎(chǔ)題,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.23.我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.(1)寫出一種你所知道的特殊四邊形中是勾股四邊形的圖形的名稱長方形,正方形.(2)如圖(1),請你在圖中畫出以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊,且對角線相等的所有勾股四邊形OAMB.(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連結(jié)DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.【考點(diǎn)】四邊形綜合題.【分析】(1)只要四邊形中有一個(gè)角是直角,根據(jù)勾股定理就有兩直角邊平方的和等于斜邊的平方,即此四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,由此可知,正方形、長方形、直角梯形都是勾股四邊形.(2)利用勾股定理計(jì)算畫出即可;(3)首先證明△ABC≌△BDC,得出AC=DE,BC=BE,連接CE,進(jìn)一步得出△BCE為等邊三角形;利用等邊三角形的性質(zhì),進(jìn)一步得出△DCE是直角三角形,問題得解.【解答】解:(1)是勾股四邊形的圖形的名稱:長方形,正方形;故答案是:長方形,正方形;(2)如圖(1),點(diǎn)M(3,4)或M(4,3);(3)證明:如圖(2),連結(jié)EC.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△DBE,則BC=BE,AC=DE.又∵∠CBE=60°,∴△CBE是等邊三角形,∴∠BCE=60°,BC=EC又∵∠DCB=30°∴∠BCE+∠DCB=90°即∠DCE=90°,∴DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.【點(diǎn)評】本題考查勾股定理,及考查旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.24.某班圍棋興趣小組的同學(xué)在一次活動(dòng)時(shí),他們用25粒圍棋擺成了如圖1所示的圖案.甲、乙兩人發(fā)現(xiàn)了該圖案的具有以下性質(zhì):甲:這是一個(gè)軸對稱圖形,且有4條對稱軸;乙:這是一個(gè)軸對稱圖形,且每條對稱軸都經(jīng)過5粒棋子.(1)請?jiān)趫D2中去掉4個(gè)棋子,使所得圖形僅保留甲所發(fā)現(xiàn)的性質(zhì).(2)請?jiān)趫D3中去掉4個(gè)棋子,使所得圖形僅保留乙所發(fā)現(xiàn)的性質(zhì).(3)在圖4中,請去掉若干個(gè)棋子(大于0且小于10),使所得圖形仍具有甲、乙兩人所發(fā)現(xiàn)的所有性質(zhì).(圖中用“×”表示去掉的棋子)【考點(diǎn)】利用軸對稱設(shè)計(jì)圖案.【分析】(1)根據(jù)圖形是一個(gè)軸對稱圖形,且有4條對稱軸,進(jìn)而得出結(jié)合軸對稱圖形的性質(zhì)得出;(2)去掉一行上的左右兩粒棋子即可符合要求的答案;(3)根據(jù)題意可以去掉8個(gè)棋子,進(jìn)而得出答案.【解答】解:(1)如圖2所示:(2)如圖3所示:(3)如圖3所示:(注:本題答案不唯一)【點(diǎn)評】此題主要考查了利用軸對稱設(shè)計(jì)圖案,熟練利用軸對稱圖形的性質(zhì)得出是解題關(guān)鍵.25.?dāng)?shù)學(xué)課上,李老師出示了如下框中的題目.小敏與同桌小聰討論后,進(jìn)行了如下解答:(1)特殊情況?探索結(jié)論當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請你直接寫出結(jié)論:AE=DB(填“>”,“<”或“=”).(2)特例啟發(fā),解答題目解:題目中,AE與DB的大小關(guān)系是:AE=DB(填“>”,“<”或“=”).理由如下:如圖2,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,(請你完成以下解答過程)(3)拓展結(jié)論,設(shè)計(jì)新題在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,求CD的長(請你直接寫出結(jié)果).【考點(diǎn)】全等三角形的判定與性質(zhì);三角形內(nèi)角和定理;等邊三角形的判定與性質(zhì).【分析】(1)根據(jù)等邊三角形的性質(zhì)和三角形的內(nèi)角和定理求出∠D=∠ECB=30°,∠ABC=60°,求出∠D=∠DEB=30°,推出DB=BE=AE即可得到答案;(2)作EF∥BC,證出等邊三角形AEF,再證△DBE≌△EFC即可得到答案;(3)分為四種情況:畫出圖形,根據(jù)等邊三角形性質(zhì)求出符合條件的CD即可.【解答】解:(1)答案為:=.(2)答案為:=.證明:在等邊△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE=∠BAC=60°,∴AE=AF=EF,∴AB﹣AE=AC﹣AF,即BE=CF,∵∠ABC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,∵ED=EC,∴∠EDB=∠ECB,∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,∴∠BED=∠FCE,在△DBE和△EFC中,∴△DBE≌△EFC(SAS),∴DB=EF,∴AE=BD.(3)解:分為四種情況:如圖1:∵AB=AC=1,AE=2,∴B是AE的中點(diǎn),∵△ABC是等邊三角形,∴AB=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信息技術(shù)教師勞動(dòng)合同范本
- 房地產(chǎn)開發(fā)商合同 示范文本
- 室內(nèi)設(shè)計(jì)裝修協(xié)議格式
- 個(gè)人商業(yè)店面出租合同協(xié)議
- 2024年化糞池清掏服務(wù)合同書
- 標(biāo)準(zhǔn)拆遷安置房買賣合同
- 公司借款合同的編寫要點(diǎn)與示范
- 旅游項(xiàng)目投資合作協(xié)議模板
- 個(gè)人車輛租賃合同
- 上海市液化氣購銷合同
- 公務(wù)員2021年國考《申論》真題(地市級(jí))及參考答案
- DPtech-FW1000系列防火墻系統(tǒng)操作手冊
- 思想道德與法治課件:第五章 第二節(jié) 吸收借鑒優(yōu)秀道德成果
- 慢支慢性阻塞性肺疾病9版.ppt
- 細(xì)紗機(jī)設(shè)備維護(hù)維修說明書
- 地方課程六年級(jí)上冊
- 淺論構(gòu)建高效課堂研究的意義
- 村級(jí)一村一品實(shí)施方案
- 高壓線安全防護(hù)專項(xiàng)施工方案(完整版)
- 時(shí)柵位移傳感技術(shù)講解
評論
0/150
提交評論