版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.劉徽是我國魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動(dòng)也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.3.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.4.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-5.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.6.生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過人,這里的“六藝”其實(shí)源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.7.已知i為虛數(shù)單位,則()A. B. C. D.8.在中,,則()A. B. C. D.9.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.10.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.11.已知正項(xiàng)等比數(shù)列滿足,若存在兩項(xiàng),,使得,則的最小值為().A.16 B. C.5 D.412.的展開式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.180二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為互不相等的正實(shí)數(shù),隨機(jī)變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)14.?dāng)?shù)列滿足遞推公式,且,則___________.15.已知函數(shù)的定義域?yàn)镽,導(dǎo)函數(shù)為,若,且,則滿足的x的取值范圍為______.16.設(shè)是定義在上的函數(shù),且,對(duì)任意,若經(jīng)過點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時(shí),為的幾何平均數(shù).(只需寫出一個(gè)符合要求的函數(shù)即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知六面體如圖所示,平面,,,,,,是棱上的點(diǎn),且滿足.(1)求證:直線平面;(2)求二面角的正弦值.18.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.20.(12分)如圖,在中,點(diǎn)在上,,,.(1)求的值;(2)若,求的長.21.(12分)某精密儀器生產(chǎn)車間每天生產(chǎn)個(gè)零件,質(zhì)檢員小張每天都會(huì)隨機(jī)地從中抽取50個(gè)零件進(jìn)行檢查是否合格,若較多零件不合格,則需對(duì)其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;(2)小張某天恰好從50個(gè)零件中檢查出2個(gè)不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個(gè)零件的成本為10元,而每個(gè)不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機(jī)變量服從正態(tài)分布,則.22.(10分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
首先明確這是一個(gè)幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆剑涿娣e為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.2、C【解析】
利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.【詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(﹣1,2),故選:C【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3、D【解析】
設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4、C【解析】
直線過定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.【點(diǎn)睛】本題考查過定點(diǎn)的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.5、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個(gè)周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個(gè)周期,即故答案為:B.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.6、C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個(gè)數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時(shí),禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時(shí),禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點(diǎn)睛】解排列組合問題要遵循兩個(gè)原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過程進(jìn)行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).7、A【解析】
根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.8、A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.9、C【解析】
連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.10、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)椋裕?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.11、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設(shè)等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故選:D.【點(diǎn)睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識(shí),是一道中檔題.12、D【解析】
求的展開式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、>【解析】
根據(jù)方差計(jì)算公式,計(jì)算出的表達(dá)式,由此利用差比較法,比較出兩者的大小關(guān)系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實(shí)數(shù),故,也即,也即.故答案為:【點(diǎn)睛】本小題主要考查隨機(jī)變量期望和方差的計(jì)算,考查差比較法比較大小,考查運(yùn)算求解能力,屬于難題.14、2020【解析】
可對(duì)左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點(diǎn)睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題15、【解析】
構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡不等式,解得結(jié)果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.16、【解析】
由定義可知三點(diǎn)共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點(diǎn)睛】本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)連接,設(shè),連接.通過證明,證得直線平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的正弦值.【詳解】(1)連接,設(shè),連接,因?yàn)椋?,所以,在中,因?yàn)椋?,且平面,故平?(2)因?yàn)?,,,,,所以,因?yàn)?,平面,所以平面,所以,,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由已知可得,,,,所以,因?yàn)?,所以,所以點(diǎn)的坐標(biāo)為,所以,,設(shè)為平面的法向量,則,令,解得,,所以,即為平面的一個(gè)法向量.,同理可求得平面的一個(gè)法向量為所以所以二面角的正弦值為【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進(jìn)行等價(jià)轉(zhuǎn)化為,,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當(dāng)時(shí),,當(dāng)時(shí),在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),由得:;由得:.∴當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對(duì)任意的和,恒成立等價(jià)于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當(dāng)時(shí),,即又∵,∴實(shí)數(shù)的取值范圍是:.【點(diǎn)睛】本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問題,考查分類討論的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),屬于中等題.19、(1)(2)【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對(duì)分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時(shí),,由此可知,的解集為(2)當(dāng)時(shí),的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時(shí),,且,不恒成立,不符合題意.當(dāng)時(shí),,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查根據(jù)絕對(duì)值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.20、(1);(2).【解析】
(1)由兩角差的正弦公式計(jì)算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因?yàn)?,所?因?yàn)椋裕?(2)在中,由,得,在中,由余弦定理可得,所以.【點(diǎn)睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.21、(1)見解析(2)需要,見解析【解析】
(1)由零件的長度服從正態(tài)分布且相互獨(dú)立,零件的長度滿足即為合格,則每一個(gè)零件的長度合格的概率為,滿足二項(xiàng)分布,利用補(bǔ)集的思想求得,再根據(jù)公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時(shí)損失的期望,與成本作差,再與0比較大小即可判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 抗裂砂漿在高速公路建設(shè)中的應(yīng)用
- 語文教學(xué)中德育教育的滲透與實(shí)踐
- 幼兒園黃豆美食課程設(shè)計(jì)
- 建筑冷熱源課程設(shè)計(jì)機(jī)房
- 大氣污染治理課程設(shè)計(jì)
- 學(xué)校心理健康教育師資培訓(xùn)
- 幼兒園日式茶藝課程設(shè)計(jì)
- 公司產(chǎn)品介紹及市場分析
- 藥店的會(huì)員管理與忠誠度提升
- 2024年度高科技園區(qū)投資入股協(xié)議范本3篇
- 中儲(chǔ)糧管理制度
- 園林藝術(shù)(江西農(nóng)業(yè)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年江西農(nóng)業(yè)大學(xué)
- 新建足球訓(xùn)練基地項(xiàng)目可行性研究報(bào)告
- 少兒藝術(shù)培訓(xùn)公司簡介
- 分布式光伏經(jīng)濟(jì)評(píng)價(jià)規(guī)范
- 《旅游財(cái)務(wù)管理》課件-9旅游企業(yè)稅收環(huán)境
- MOOC 風(fēng)景背后的地貌學(xué)-華中師范大學(xué) 中國大學(xué)慕課答案
- 《色彩構(gòu)成》課件- 第六章 色彩的心理分析
- 流行音樂(中國)
- 敬老院消防應(yīng)急預(yù)案方案及流程
- 股東計(jì)劃書模板
評(píng)論
0/150
提交評(píng)論