版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,已知雙曲線的右焦點(diǎn)為,雙曲線的右支上一點(diǎn),它關(guān)于原點(diǎn)的對稱點(diǎn)為,滿足,且,則雙曲線的離心率是().A. B. C. D.2.已知雙曲線的左、右焦點(diǎn)分別為,,P是雙曲線E上的一點(diǎn),且.若直線與雙曲線E的漸近線交于點(diǎn)M,且M為的中點(diǎn),則雙曲線E的漸近線方程為()A. B. C. D.3.已知實(shí)數(shù)滿足則的最大值為()A.2 B. C.1 D.04.在區(qū)間上隨機(jī)取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.115.在三角形中,,,求()A. B. C. D.6.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件7.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.8.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.9.已知集合,,則=()A. B. C. D.10.對兩個變量進(jìn)行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.11.拋物線的焦點(diǎn)為,則經(jīng)過點(diǎn)與點(diǎn)且與拋物線的準(zhǔn)線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個12.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若隨機(jī)變量的分布列如表所示,則______,______.-10114.已知,記,則的展開式中各項系數(shù)和為__________.15.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機(jī)取出的種子,則取出了帶麥銹病種子的概率是_____.16.設(shè)α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以直角坐標(biāo)系的原點(diǎn)為極坐標(biāo)系的極點(diǎn),軸的正半軸為極軸.已知曲線的極坐標(biāo)方程為,是上一動點(diǎn),,點(diǎn)的軌跡為.(1)求曲線的極坐標(biāo)方程,并化為直角坐標(biāo)方程;(2)若點(diǎn),直線的參數(shù)方程(為參數(shù)),直線與曲線的交點(diǎn)為,當(dāng)取最小值時,求直線的普通方程.18.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求的值;(2)若,求的面積.19.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由.20.(12分)第十四屆全國冬季運(yùn)動會召開期間,某校舉行了“冰上運(yùn)動知識競賽”,為了解本次競賽成績情況,從中隨機(jī)抽取部分學(xué)生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機(jī)抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負(fù)責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負(fù)責(zé)人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0021.(12分)中國古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結(jié)論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.22.(10分)已知數(shù)列的前項和為,且滿足.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
易得,,又,平方計算即可得到答案.【詳解】設(shè)雙曲線C的左焦點(diǎn)為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點(diǎn)睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.2.C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點(diǎn)P一定在左支上.由及,得,,再結(jié)合M為的中點(diǎn),得,又因?yàn)镺M是的中位線,又,且,從而直線與雙曲線的左支只有一個交點(diǎn).在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點(diǎn)睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點(diǎn)三角形等知識,是一道中檔題.3.B【解析】
作出可行域,平移目標(biāo)直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點(diǎn)時,其截距最大,此時最大得,當(dāng)時,故選:B【點(diǎn)睛】考查線性規(guī)劃,是基礎(chǔ)題.4.D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點(diǎn)有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.5.A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計算能力,屬于中等題.6.B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.7.B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.8.C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.9.C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計算能力.10.D【解析】
作出四個函數(shù)的圖象及給出的四個點(diǎn),觀察這四個點(diǎn)在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點(diǎn),它們在曲線的兩側(cè),與其他三個曲線都離得很遠(yuǎn),因此D是正確選項,故選:D.【點(diǎn)睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點(diǎn)越多,說明擬合效果好.11.B【解析】
圓心在的中垂線上,經(jīng)過點(diǎn),且與相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)的距離相等,圓心在拋物線上,直線與拋物線交于2個點(diǎn),得到2個圓.【詳解】因?yàn)辄c(diǎn)在拋物線上,又焦點(diǎn),,由拋物線的定義知,過點(diǎn)、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點(diǎn),這樣的交點(diǎn)共有2個,故過點(diǎn)、且與相切的圓的不同情況種數(shù)是2種.故選:.【點(diǎn)睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.12.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點(diǎn)睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.14.【解析】
根據(jù)定積分的計算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計算,可得,令,則,即的展開式中各項系數(shù)和為.【點(diǎn)睛】本題主要考查了定積分的應(yīng)用,以及二項式定理的應(yīng)用,其中解答中根據(jù)定積分的計算和二項式定理求得的表示是解答本題的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.15.【解析】
求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點(diǎn)睛】本題主要考查了體積類的幾何概型問題,屬于基礎(chǔ)題.16.④【解析】
根據(jù)直線和平面,平面和平面的位置關(guān)系依次判斷每個選項得到答案.【詳解】對于①,當(dāng)m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當(dāng)m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當(dāng)α∥β,且m?α,n?β時,由兩平面平行的性質(zhì)定理,不能得出m∥n,③錯誤;對于④,當(dāng)α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質(zhì)定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.【點(diǎn)睛】本題考查了直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的空間想象能力和推斷能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】
(1)設(shè)點(diǎn)極坐標(biāo)分別為,,由可得,整理即可得到極坐標(biāo)方程,進(jìn)而求得直角坐標(biāo)方程;(2)設(shè)點(diǎn)對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程代入的直角坐標(biāo)方程中,再利用韋達(dá)定理可得,,則,求得取最小值時符合的條件,進(jìn)而求得直線的普通方程.【詳解】(1)設(shè)點(diǎn)極坐標(biāo)分別為,,因?yàn)?則,所以曲線的極坐標(biāo)方程為,兩邊同乘,得,所以的直角坐標(biāo)方程為,即.(2)設(shè)點(diǎn)對應(yīng)的參數(shù)分別為,則,,將直線的參數(shù)方程(參數(shù)),代入的直角坐標(biāo)方程中,整理得.由韋達(dá)定理得,,所以,當(dāng)且僅當(dāng)時,等號成立,則,所以當(dāng)取得最小值時,直線的普通方程為.【點(diǎn)睛】本題考查極坐標(biāo)與直角坐標(biāo)方程的轉(zhuǎn)化,考查利用直線的參數(shù)方程研究直線與圓的位置關(guān)系.18.(1);(2).【解析】
(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點(diǎn)睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.19.(1)(2)【解析】試題分析:(1)因?yàn)闄E圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因?yàn)橹本€為圓心在原點(diǎn)的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點(diǎn)為或滿足,綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且.考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點(diǎn)評:中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達(dá)定理.存在性問題,往往從假設(shè)存在出發(fā),運(yùn)用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達(dá)定理,應(yīng)用平面向量知識證明了圓的存在性.20.(1),,,;(2)【解析】
(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關(guān)系分別求出,進(jìn)而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負(fù)責(zé)人的抽取方法,得出第4組抽取的學(xué)生中至少有一名是負(fù)責(zé)人的抽法數(shù),由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因?yàn)榈?、4、5組共有50名學(xué)生,所以利用分層抽樣在50名學(xué)生中抽取5名學(xué)生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設(shè)第3組的3位同學(xué)為、,第4組的2位同學(xué)為、,第5組的1位同學(xué)為,則從五位同學(xué)中抽兩位同學(xué)有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學(xué)、至少有一位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 動漫行業(yè)合同范例
- 店鋪合伙合同范例
- 工商裝修合同范例
- 四年級數(shù)學(xué)(除數(shù)是兩位數(shù))計算題專項練習(xí)及答案
- 三年級數(shù)學(xué)(上)計算題專項練習(xí)附答案
- 裝電纜合同范例
- 旅游人包車合同范例
- 運(yùn)送柴油運(yùn)費(fèi)合同范例
- 2024至2030年不干膠制品項目投資價值分析報告
- 陜西能源職業(yè)技術(shù)學(xué)院《工商類專業(yè)寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 電路分析試題及答案(大學(xué)期末考試題)
- 藝術(shù)景觀專業(yè)職業(yè)生涯發(fā)展報告
- 遼寧經(jīng)濟(jì)職業(yè)技術(shù)學(xué)院單招《語文》考試復(fù)習(xí)題庫(含答案)
- 水工藝設(shè)備基礎(chǔ)全套課件
- HGT 2520-2023 工業(yè)亞磷酸 (正式版)
- 跨文化人工智能倫理比較
- 外委單位安全培訓(xùn)
- 母嬰行業(yè)趨勢圖分析
- 設(shè)備修理行業(yè)行業(yè)痛點(diǎn)與解決措施
- 售后工程師售后服務(wù)標(biāo)準(zhǔn)培訓(xùn)
- 年貨節(jié)活動策劃方案
評論
0/150
提交評論