版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知且,函數(shù),若,則()A.2 B. C. D.2.設(shè)全集集合,則()A. B. C. D.3.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.4.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.6.已知,,,是球的球面上四個不同的點,若,且平面平面,則球的表面積為()A. B. C. D.7.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.8.函數(shù)的圖像大致為().A. B.C. D.9.設(shè)實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1410.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.411.中,點在邊上,平分,若,,,,則()A. B. C. D.12.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,曲線上任意一點到直線的距離的最小值為________.14.已知,,分別為內(nèi)角,,的對邊,,,,則的面積為__________.15.已知正項等比數(shù)列中,,則__________.16.根據(jù)如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內(nèi)的動點在點右側(cè),拋物線上第四象限內(nèi)的動點,滿足,求直線的斜率范圍.18.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.19.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當(dāng)線段AB的長度最小時,求s的值.20.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點的坐標(biāo).21.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.22.(10分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大??;(2)在棱上確定一點,使二面角的平面角的余弦值為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.2、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.3、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.4、A【解析】
利用兩條直線互相平行的條件進(jìn)行判定【詳解】當(dāng)時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.5、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.6、A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.7、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.8、A【解析】
本題采用排除法:由排除選項D;根據(jù)特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數(shù),則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當(dāng),且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.9、D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.10、C【解析】
根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎(chǔ)題.11、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.12、B【解析】
根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
解法一:曲線上任取一點,利用基本不等式可求出該點到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點坐標(biāo),再計算出切點到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點,該點到直線的距離為,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,曲線上任意一點到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點的切線與直線平行,則,解得,當(dāng)時,到直線的距離;當(dāng)時,到直線的距離.所以曲線上任意一點到直線的距離的最小值為.故答案為:.【點睛】本題考查曲線上一點到直線距離最小值的計算,可轉(zhuǎn)化為利用切線與直線平行來找出切點,轉(zhuǎn)化為切點到直線的距離,也可以設(shè)曲線上的動點坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.14、【解析】
根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計算能力.15、【解析】
利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎(chǔ)題.16、【解析】
滿足條件執(zhí)行,否則執(zhí)行.【詳解】本題實質(zhì)是求分段函數(shù)在處的函數(shù)值,當(dāng)時,.故答案為:1【點睛】本題考查條件語句的應(yīng)用,此類題要做到讀懂算法語句,本題是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)【解析】
(1)根據(jù)點到焦點的距離為2,利用拋物線的定義得,再根據(jù)點在拋物線上有,列方程組求解,(2)設(shè),根據(jù),再由,求得,當(dāng),即時,直線斜率不存在;當(dāng)時,,令,利用導(dǎo)數(shù)求解,【詳解】(1)因為點到焦點的距離為2,即點到準(zhǔn)線的距離為2,得,又,解得,所以拋物線方程為(2)設(shè),由由,則當(dāng),即時,直線斜率不存在;當(dāng)時,令,所以在上分別遞減則【點睛】本題主要考查拋物線定義及方程的應(yīng)用,還考查了分類討論的思想和運算求解的能力,屬于中檔題,18、(1)詳見解析(2)【解析】
(1)如圖,作,交于,連接.因為,所以是的三等分點,可得.因為,,,所以,因為,所以,因為,所以,所以,因為,所以,所以,因為平面,平面,所以平面.又,平面,平面,所以平面.因為,、平面,所以平面平面,所以平面.(2)因為是等邊三角形,,所以.又因為,,所以,所以.又,平面,,所以平面.因為平面,所以平面平面.在平面內(nèi)作平面.以B點為坐標(biāo)原點,分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,所以,,,.設(shè)為平面的法向量,則,即,令,可得.設(shè)為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.19、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標(biāo)為,設(shè),因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時,取得極小值也是最小值,即AB取得最小值此時.【點睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運算能力和轉(zhuǎn)化能力,屬于難題.20、(1);(2)【解析】
(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點,坐標(biāo),設(shè)直線的方程為,易知,可得點的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進(jìn)而由三點共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點的坐標(biāo)為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標(biāo)為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學(xué)生的計算求解能力,屬于難題.21、(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進(jìn)行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時,,當(dāng),,當(dāng)時,,所以解法二:(1)如圖當(dāng)時,解法三:(1)當(dāng)且僅當(dāng)即時,等號成立.當(dāng)時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點睛】本題主要考查了絕對值函數(shù)的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應(yīng)用,考查了學(xué)生的邏輯推理和運算求解能力.22、(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點的坐標(biāo),求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大?。?/p>
(2)設(shè)棱B1C1上的一點P,由向量共線得到P點的坐標(biāo),然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦車?yán)旨?xì)分市場深度研究報告
- 玩具用服裝商業(yè)機(jī)會挖掘與戰(zhàn)略布局策略研究報告
- 牙科用導(dǎo)電漆商業(yè)機(jī)會挖掘與戰(zhàn)略布局策略研究報告
- 國際公法服務(wù)行業(yè)營銷策略方案
- 蜂箱用巢礎(chǔ)市場分析及投資價值研究報告
- 帶有時鐘的收音機(jī)產(chǎn)品供應(yīng)鏈分析
- 安全網(wǎng)產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 廢舊金屬回收利用行業(yè)相關(guān)項目經(jīng)營管理報告
- 衛(wèi)星傳輸帶寬出租行業(yè)營銷策略方案
- 電路測試儀產(chǎn)品供應(yīng)鏈分析
- 陶瓷窯爐與設(shè)計:第一章 隧道窯-工作原理
- 急救小常識醫(yī)療PPT模板
- 工程項目管理-英文課件-ProjectProcurement.ppt
- 鋼管束組合結(jié)構(gòu)體系簡介ppt課件
- 土壓平衡頂管施工工藝工法(給排水管道施工,附施工圖)
- 鹽堿地改良項目建議書范文
- 現(xiàn)代密碼學(xué)清華大學(xué)楊波著部分習(xí)題答案
- 房地產(chǎn)組織架構(gòu)圖
- 停線管理規(guī)定
- 《我和小姐姐克拉拉》閱讀題及答案(一)
- 大型展會對城市會展業(yè)發(fā)展影響文獻(xiàn)綜述會展專業(yè)
評論
0/150
提交評論