版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標(biāo)系中,四面體各頂點坐標(biāo)分別為:.假設(shè)螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.2.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.3.已知函數(shù),若,則下列不等關(guān)系正確的是()A. B.C. D.4.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個,導(dǎo)線接頭忽略不計),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米5.在中,,,,則邊上的高為()A. B.2 C. D.6.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.7.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細(xì)算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.設(shè)集合,,若,則的取值范圍是()A. B. C. D.9.已知是圓心為坐標(biāo)原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉(zhuǎn)到交圓于點,則的最大值為()A.3 B.2 C. D.10.在中,,則=()A. B.C. D.11.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣212.集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進(jìn)行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數(shù)不超過2時才為有效票.甲乙丙14.在正方體中,已知點在直線上運(yùn)動,則下列四個命題中:①三棱錐的體積不變;②;③當(dāng)為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)15.函數(shù)在區(qū)間上的值域為______.16.在數(shù)列中,已知,則數(shù)列的的前項和為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.18.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個零點,且此時恒成立,求實數(shù)m的取值范圍.19.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大??;(2)求函數(shù)的值域.20.(12分)已知橢圓:(),點是的左頂點,點為上一點,離心率.(1)求橢圓的方程;(2)設(shè)過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經(jīng)過點,若存在,求出直線的方程;若不存在,說明理由.21.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍.22.(10分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設(shè)為的中點,為上的動點(不與重合)求二面角的正切值的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.2、D【解析】
設(shè),,作為一個基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、B【解析】
利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當(dāng)時,,故A錯誤;對C,當(dāng)時,,故C錯誤;對D,當(dāng)時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運(yùn)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,屬于基礎(chǔ)題.4、B【解析】
由于實際問題中扇形弧長較小,可將導(dǎo)線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導(dǎo)線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.5、C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.6、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.7、C【解析】
設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.8、C【解析】
由得出,利用集合的包含關(guān)系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計算能力,屬于基礎(chǔ)題.9、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.10、B【解析】
在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.11、D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、D【解析】
利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運(yùn)算,注意常見集合的符號表示,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、91【解析】
設(shè)共有選票張,且票對應(yīng)張數(shù)為,由此可構(gòu)造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設(shè)共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【點睛】本題考查線性規(guī)劃的實際應(yīng)用問題,關(guān)鍵是能夠根據(jù)已知條件構(gòu)造出變量所滿足的關(guān)系式.14、①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,運(yùn)用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當(dāng)點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運(yùn)動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點時,以點D為坐標(biāo)原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當(dāng)點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運(yùn)用對稱的思想,兩點之間線段最短進(jìn)行求解,屬于難度題.15、【解析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個角的一個三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.16、【解析】
由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.【點睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項公式,訓(xùn)練了數(shù)列的分組求和,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時為增函數(shù),由此可得出答案;(2)由(1)知,,即,結(jié)合“1”的代換,利用基本不等式即可證明結(jié)論.【詳解】解:(1)法一:(當(dāng)且僅當(dāng)時取等號),又(當(dāng)且僅當(dāng)時取等號),所以(當(dāng)且僅當(dāng)時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數(shù),且時為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應(yīng)用,屬于中檔題.18、(1)時,在上單調(diào)遞增,時,在上遞減,在上遞增.(2).【解析】
(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時,,單調(diào)遞增;時,令得,時,,遞減,時,,遞增,綜上所述,時,在上單調(diào)遞增,時,在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點,則或.當(dāng)時,,,從而只需時,恒成立,即,令,,在上遞減,在上遞增,∴,從而.時,,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點個數(shù)與不等式恒成立問題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過導(dǎo)數(shù)求解.19、(1);(2)【解析】
(1)由向量平行的坐標(biāo)表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進(jìn)而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應(yīng)用問題;涉及到共線向量的坐標(biāo)表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應(yīng)用、正弦型函數(shù)值域的求解等知識.20、(1);(2)存在,【解析】
(1)把點代入橢圓C的方程,再結(jié)合離心率,可得a,b,c的關(guān)系,可得橢圓的方程;(2)設(shè)出直線的方程,代入橢圓,運(yùn)用韋達(dá)定理可求得點的坐標(biāo),再由,可求得直線的方程,要注意檢驗直線是否和橢圓有兩個交點.【詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設(shè),直線的斜率存在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版國家救災(zāi)帳篷設(shè)計與研發(fā)合作協(xié)議3篇
- 二零二五版跨國撫養(yǎng)權(quán)協(xié)議書范本3篇
- 二零二五版包裝印刷行業(yè)知識產(chǎn)權(quán)保護(hù)合同3篇
- 2025年度物業(yè)管理員工加班費與休息休假制度合同3篇
- 2025版煤炭運(yùn)輸合同碳排放量監(jiān)測與報告要求4篇
- 中鐵2024年短期勞務(wù)派遣協(xié)議3篇
- 二零二五版離異父母子女共同財產(chǎn)分割及監(jiān)護(hù)權(quán)變更協(xié)議合同范本6篇
- 二零二五年度綠色建筑項目融資合同書3篇
- 2025年度落水管安裝與排水系統(tǒng)安全評估合同4篇
- 2025煤炭運(yùn)輸合同供應(yīng)鏈金融合作框架4篇
- 英語名著閱讀老人與海教學(xué)課件(the-old-man-and-the-sea-)
- 學(xué)校食品安全知識培訓(xùn)課件
- 全國醫(yī)學(xué)博士英語統(tǒng)一考試詞匯表(10000詞全) - 打印版
- 最新《會計職業(yè)道德》課件
- DB64∕T 1776-2021 水土保持生態(tài)監(jiān)測站點建設(shè)與監(jiān)測技術(shù)規(guī)范
- ?中醫(yī)院醫(yī)院等級復(fù)評實施方案
- 數(shù)學(xué)-九宮數(shù)獨100題(附答案)
- 理正深基坑之鋼板樁受力計算
- 學(xué)校年級組管理經(jīng)驗
- 10KV高壓環(huán)網(wǎng)柜(交接)試驗
- 未來水電工程建設(shè)抽水蓄能電站BIM項目解決方案
評論
0/150
提交評論