2022屆內(nèi)蒙古錫林郭勒市重點(diǎn)中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆內(nèi)蒙古錫林郭勒市重點(diǎn)中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆內(nèi)蒙古錫林郭勒市重點(diǎn)中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆內(nèi)蒙古錫林郭勒市重點(diǎn)中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆內(nèi)蒙古錫林郭勒市重點(diǎn)中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正四面體的棱長(zhǎng)為,是該正四面體外接球球心,且,,則()A. B.C. D.2.已知函數(shù)滿(mǎn)足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知,則不等式的解集是()A. B. C. D.4.在邊長(zhǎng)為的菱形中,,沿對(duì)角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.5.若復(fù)數(shù)滿(mǎn)足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.6.復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.7.是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則()A. B. C. D.8.已知集合,,則()A. B.C.或 D.9.已知集合,則()A. B.C. D.10.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.11.若表示不超過(guò)的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.812.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.四面體中,底面,,,則四面體的外接球的表面積為_(kāi)_____14.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)_____.15.已知函數(shù),若函數(shù)有6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.16.在中,角A,B,C的對(duì)邊分別為a,b,c,且,則________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某精密儀器生產(chǎn)車(chē)間每天生產(chǎn)個(gè)零件,質(zhì)檢員小張每天都會(huì)隨機(jī)地從中抽取50個(gè)零件進(jìn)行檢查是否合格,若較多零件不合格,則需對(duì)其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長(zhǎng)度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長(zhǎng)度滿(mǎn)足,則認(rèn)為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;(2)小張某天恰好從50個(gè)零件中檢查出2個(gè)不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個(gè)零件的成本為10元,而每個(gè)不合格零件流入市場(chǎng)帶來(lái)的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說(shuō)明理由.附:若隨機(jī)變量服從正態(tài)分布,則.18.(12分)已知橢圓的離心率為,橢圓C的長(zhǎng)軸長(zhǎng)為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.19.(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對(duì)任意的有.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.21.(12分)已知數(shù)列的前n項(xiàng)和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令.求數(shù)列的前n項(xiàng)和.22.(10分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦?,因此,則,因此,因此,則,故選A.【點(diǎn)睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.2.B【解析】

結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.3.A【解析】

構(gòu)造函數(shù),通過(guò)分析的單調(diào)性和對(duì)稱(chēng)性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動(dòng)一個(gè)單位得到,的定義域?yàn)?,且,所以為奇函?shù),圖像關(guān)于原點(diǎn)對(duì)稱(chēng),所以圖像關(guān)于對(duì)稱(chēng).不等式等價(jià)于,等價(jià)于,注意到,結(jié)合圖像關(guān)于對(duì)稱(chēng)和單調(diào)遞增可知.所以不等式的解集是.故選:A【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對(duì)稱(chēng)性解不等式,屬于中檔題.4.A【解析】

畫(huà)圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過(guò)幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.5.D【解析】

由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.6.C【解析】

利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.7.B【解析】

設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值.【詳解】由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過(guò)垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,,取的三等分點(diǎn)、如圖,則,,,,所以、、、、,由題意設(shè),,和都是等邊三角形,為的中點(diǎn),,,,平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線且為定值,則也為定值,,可得,此時(shí),則,.故選:B.【點(diǎn)睛】考查線面所成的角的求法,及正切值為定值時(shí)的情況,屬于中等題.8.D【解析】

首先求出集合,再根據(jù)補(bǔ)集的定義計(jì)算可得;【詳解】解:∵,解得∴,∴.故選:D【點(diǎn)睛】本題考查補(bǔ)集的概念及運(yùn)算,一元二次不等式的解法,屬于基礎(chǔ)題.9.B【解析】

先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.10.B【解析】

推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.11.B【解析】

求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.【點(diǎn)睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.12.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意畫(huà)出圖形,補(bǔ)形為長(zhǎng)方體,求其對(duì)角線長(zhǎng),可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長(zhǎng)方體,則過(guò)一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別為1,1,,則長(zhǎng)方體的對(duì)角線長(zhǎng)為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.14.160【解析】

先求的展開(kāi)式中通項(xiàng),令的指數(shù)為3即可求解結(jié)論.【詳解】解:因?yàn)榈恼归_(kāi)式的通項(xiàng)公式為:;令,可得;的展開(kāi)式中的常數(shù)項(xiàng)為:.故答案為:160.【點(diǎn)睛】本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記二項(xiàng)展開(kāi)式的通項(xiàng),屬于基礎(chǔ)題.15.【解析】

由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關(guān)于a的不等式,求解不等式即可確定實(shí)數(shù)a的取值范圍.【詳解】當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實(shí)數(shù)滿(mǎn)足,當(dāng)時(shí),由對(duì)勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當(dāng)時(shí),,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個(gè)零點(diǎn),即方程有6個(gè)根,也就是有6個(gè)根,即與有6個(gè)不同交點(diǎn),注意到函數(shù)關(guān)于直線對(duì)稱(chēng),則函數(shù)關(guān)于直線對(duì)稱(chēng),繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實(shí)數(shù)的取值范圍是.故答案為.【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,復(fù)合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16.【解析】

利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點(diǎn)睛】本題考查利用正弦定理實(shí)現(xiàn)邊角互化,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析(2)需要,見(jiàn)解析【解析】

(1)由零件的長(zhǎng)度服從正態(tài)分布且相互獨(dú)立,零件的長(zhǎng)度滿(mǎn)足即為合格,則每一個(gè)零件的長(zhǎng)度合格的概率為,滿(mǎn)足二項(xiàng)分布,利用補(bǔ)集的思想求得,再根據(jù)公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時(shí)損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿(mǎn)足二項(xiàng)分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當(dāng)充分大時(shí),,所以為了使損失盡量小,小張需要檢查其余所有零件.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用,考查二項(xiàng)分布的期望,考查補(bǔ)集思想的應(yīng)用,考查分析能力與數(shù)據(jù)處理能力.18.(1);(2)存在,當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.【解析】

(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長(zhǎng)軸長(zhǎng)為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn).設(shè)點(diǎn),,,,將直線的方程代入,化簡(jiǎn),利用韋達(dá)定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.理由如下:設(shè)點(diǎn),,將直線的方程代入,并整理,得.(*)則,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O,所以,即.又,于是,解得,經(jīng)檢驗(yàn)知:此時(shí)(*)式的,符合題意.所以當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O【點(diǎn)睛】本題考查橢圓方程的求法,橢圓的簡(jiǎn)單性質(zhì),直線與橢圓位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.19.(1)答案見(jiàn)解析.(2)答案見(jiàn)解析【解析】

(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解.(2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時(shí),,故在單調(diào)遞減.(2)首先證,令,則單調(diào)遞增,且,所以再令,所以單調(diào)遞增,即,∴【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.20.(1),;(2).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,可得點(diǎn)在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因?yàn)辄c(diǎn)在曲線上,為正三角形,所以點(diǎn)在曲線上.又因?yàn)辄c(diǎn)在曲線上,所以點(diǎn)的極坐標(biāo)是,從而,點(diǎn)的極坐標(biāo)是.(2)由(1)可知,點(diǎn)的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,有即點(diǎn)在以為圓心,為半徑的圓上.,所以的最大值為.【點(diǎn)睛】本題考查了極坐標(biāo)和參數(shù)方程綜合,考查了極坐標(biāo)和直角坐標(biāo)互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.21.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項(xiàng)公式;進(jìn)而列方程組求數(shù)列的首項(xiàng)與公差,得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.試題解析:(1)由題意知當(dāng)時(shí),,當(dāng)時(shí),,所以.設(shè)數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論