2023-2024學(xué)年湖南省醴陵市重點(diǎn)名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第1頁(yè)
2023-2024學(xué)年湖南省醴陵市重點(diǎn)名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第2頁(yè)
2023-2024學(xué)年湖南省醴陵市重點(diǎn)名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第3頁(yè)
2023-2024學(xué)年湖南省醴陵市重點(diǎn)名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第4頁(yè)
2023-2024學(xué)年湖南省醴陵市重點(diǎn)名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年湖南省醴陵市重點(diǎn)名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥32.我國(guó)的釣魚島面積約為4400000m2,用科學(xué)記數(shù)法表示為()A.4.4×106B.44×105C.4×106D.0.44×1073.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°4.計(jì)算的結(jié)果為()A.1 B.x C. D.5.如圖,在Rt△ABC中,∠ACB=90°,CD是AB邊上的中線,AC=8,BC=6,則∠ACD的正切值是()A. B. C. D.6.去年12月24日全國(guó)大約有1230000人參加研究生招生考試,1230000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1057.如圖,A(4,0),B(1,3),以O(shè)A、OB為邊作□OACB,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)點(diǎn)C.則下列結(jié)論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個(gè)單位長(zhǎng)度,點(diǎn)B落在反比例函數(shù)的圖象上.D.將□OACB繞點(diǎn)O旋轉(zhuǎn)180°,點(diǎn)C的對(duì)應(yīng)點(diǎn)落在反比例函數(shù)圖象的另一分支上.8.如圖,BC平分∠ABE,AB∥CD,E是CD上一點(diǎn),若∠C=35°,則∠BED的度數(shù)為()A.70° B.65° C.62° D.60°9.如圖,在中,分別在邊邊上,已知,則的值為()A. B. C. D.10.如圖由四個(gè)相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點(diǎn)O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數(shù)式表示,其中n為正整數(shù))12.如圖,?ABCD中,M、N是BD的三等分點(diǎn),連接CM并延長(zhǎng)交AB于點(diǎn)E,連接EN并延長(zhǎng)交CD于點(diǎn)F,以下結(jié)論:①E為AB的中點(diǎn);②FC=4DF;③S△ECF=;④當(dāng)CE⊥BD時(shí),△DFN是等腰三角形.其中一定正確的是_____.13.如圖,將一張矩形紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為,再將所折得的圖形沿EF折疊,使得點(diǎn)D和點(diǎn)A重合若,,則折痕EF的長(zhǎng)為______.14.如圖為二次函數(shù)圖象的一部分,其對(duì)稱軸為直線.若其與x軸一交點(diǎn)為A(3,0)則由圖象可知,不等式的解集是_______.15.定義:在平面直角坐標(biāo)系xOy中,把從點(diǎn)P出發(fā)沿縱或橫方向到達(dá)點(diǎn)Q(至多拐一次彎)的路徑長(zhǎng)稱為P,Q的“實(shí)際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實(shí)際距離”為1,即PS+SQ=1或PT+TQ=1.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設(shè)A,B,C三個(gè)小區(qū)的坐標(biāo)分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點(diǎn)M表示單車停放點(diǎn),且滿足M到A,B,C的“實(shí)際距離”相等,則點(diǎn)M的坐標(biāo)為_____.16.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰在弧EF上,則圖中陰影部分的面積為__________.17.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數(shù)是___.三、解答題(共7小題,滿分69分)18.(10分)尺規(guī)作圖:校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學(xué)校準(zhǔn)備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠(yuǎn),并且到兩條路的距離也一樣遠(yuǎn),請(qǐng)你幫助畫出燈柱的位置P.(不寫畫圖過(guò)程,保留作圖痕跡)19.(5分)某校對(duì)六至九年級(jí)學(xué)生圍繞“每天30分鐘的大課間,你最喜歡的體育活動(dòng)項(xiàng)目是什么?(只寫一項(xiàng))”的問(wèn)題,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,從而得到一組數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:該校對(duì)多少學(xué)生進(jìn)行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡籃球活動(dòng)的有多少?占被調(diào)查人數(shù)的百分比是多少?若該校九年級(jí)共有200名學(xué)生,如圖是根據(jù)各年級(jí)學(xué)生人數(shù)占全校學(xué)生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計(jì)圖,請(qǐng)估計(jì)全校六至九年級(jí)學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為多少?20.(8分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過(guò)P(1,﹣m)作PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(1)若m=2,求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(10分)如圖,小明在一塊平地上測(cè)山高,先在B處測(cè)得山頂A的仰角為30°,然后向山腳直行60米到達(dá)C處,再測(cè)得山頂A的仰角為45°,求山高AD的長(zhǎng)度.(測(cè)角儀高度忽略不計(jì))22.(10分)草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.(1)求y與x的函數(shù)關(guān)系式;(2)直接寫出自變量x的取值范圍.23.(12分)如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問(wèn)總量的條形統(tǒng)計(jì)圖,如圖2為該網(wǎng)站本周學(xué)生日訪問(wèn)量占日訪問(wèn)總量的百分比統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息完成下列填空:這一周訪問(wèn)該網(wǎng)站一共有萬(wàn)人次;周日學(xué)生訪問(wèn)該網(wǎng)站有萬(wàn)人次;周六到周日學(xué)生訪問(wèn)該網(wǎng)站的日平均增長(zhǎng)率為.24.(14分)如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點(diǎn)D,BC是⊙O的切線,E為BC的中點(diǎn),連接AE、DE.求證:DE是⊙O的切線;設(shè)△CDE的面積為S1,四邊形ABED的面積為S1.若S1=5S1,求tan∠BAC的值;在(1)的條件下,若AE=3,求⊙O的半徑長(zhǎng).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】試題解析:一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點(diǎn):在數(shù)軸上表示不等式的解集.2、A【解析】4400000=4.4×1.故選A.點(diǎn)睛:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).3、A【解析】

先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大小.【詳解】由圖可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟練掌握這一點(diǎn)是解題的關(guān)鍵.4、A【解析】

根據(jù)同分母分式的加減運(yùn)算法則計(jì)算可得.【詳解】原式===1,故選:A.【點(diǎn)睛】本題主要考查分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運(yùn)算法則.5、D【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=AD,再根據(jù)等邊對(duì)等角的性質(zhì)可得∠A=∠ACD,然后根據(jù)正切函數(shù)的定義列式求出∠A的正切值,即為tan∠ACD的值.【詳解】∵CD是AB邊上的中線,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故選D.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義,直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊對(duì)等角的性質(zhì),求出∠A=∠ACD是解本題的關(guān)鍵.6、A【解析】分析:科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時(shí),要看把原數(shù)變成時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),是負(fù)數(shù).詳解:1230000這個(gè)數(shù)用科學(xué)記數(shù)法可以表示為故選A.點(diǎn)睛:考查科學(xué)記數(shù)法,掌握絕對(duì)值大于1的數(shù)的表示方法是解題的關(guān)鍵.7、B【解析】

先根據(jù)平行四邊形的性質(zhì)得到點(diǎn)的坐標(biāo),再代入反比例函數(shù)(k≠0)求出其解析式,再根據(jù)反比例函數(shù)的圖象與性質(zhì)對(duì)選項(xiàng)進(jìn)行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)點(diǎn),,反比例函數(shù)解析式為.□OACB的面積為,正確;當(dāng)時(shí),,故錯(cuò)誤;將□OACB向上平移12個(gè)單位長(zhǎng)度,點(diǎn)的坐標(biāo)變?yōu)椋诜幢壤瘮?shù)圖象上,故正確;因?yàn)榉幢壤瘮?shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱,故將□OACB繞點(diǎn)O旋轉(zhuǎn)180°,點(diǎn)C的對(duì)應(yīng)點(diǎn)落在反比例函數(shù)圖象的另一分支上,正確.故選:B.【點(diǎn)睛】本題綜合考查了平行四邊形的性質(zhì)和反比例函數(shù)的圖象與性質(zhì),結(jié)合圖形,熟練掌握和運(yùn)用相關(guān)性質(zhì)定理是解答關(guān)鍵.8、A【解析】

由AB∥CD,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得∠ABC的度數(shù),又由BC平分∠ABE,即可求得∠ABE的度數(shù),繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是掌握平行線的性質(zhì)進(jìn)行解答.9、B【解析】

根據(jù)DE∥BC得到△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)解答.【詳解】解:∵,

∴,

∵DE∥BC,

∴△ADE∽△ABC,

∴,

故選:B.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),掌握相似三角形的對(duì)應(yīng)邊的比等于相似比是解題的關(guān)鍵.10、D【解析】從正面看,共2列,左邊是1個(gè)正方形,右邊是2個(gè)正方形,且下齊.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題解析:如圖,連接D1E1,設(shè)AD1、BE1交于點(diǎn)M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案為.12、①③④【解析】

由M、N是BD的三等分點(diǎn),得到DN=NM=BM,根據(jù)平行四邊形的性質(zhì)得到AB=CD,AB∥CD,推出△BEM∽△CDM,根據(jù)相似三角形的性質(zhì)得到,于是得到BE=AB,故①正確;根據(jù)相似三角形的性質(zhì)得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②錯(cuò)誤;根據(jù)已知條件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正確;根據(jù)線段垂直平分線的性質(zhì)得到EB=EN,根據(jù)等腰三角形的性質(zhì)得到∠ENB=∠EBN,等量代換得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正確.【詳解】解:∵??M、N是BD的三等分點(diǎn),∴DN=NM=BM,∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正確;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②錯(cuò)誤;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正確;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正確;故答案為①③④.【點(diǎn)睛】考點(diǎn):相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);平行四邊形的性質(zhì).13、【解析】

首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長(zhǎng),又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長(zhǎng),又由中位線的性質(zhì)求得EM的長(zhǎng),則問(wèn)題得解【詳解】如圖,設(shè)與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設(shè),則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點(diǎn)睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識(shí),綜合性較強(qiáng),有一定的難度,解題時(shí)要注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.14、﹣1<x<1【解析】試題分析:由圖象得:對(duì)稱軸是x=1,其中一個(gè)點(diǎn)的坐標(biāo)為(1,0)∴圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(-1,0)利用圖象可知:ax2+bx+c<0的解集即是y<0的解集,∴-1<x<1.考點(diǎn):二次函數(shù)與不等式(組).15、(1,﹣2).【解析】

若設(shè)M(x,y),則由題目中對(duì)“實(shí)際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).16、.【解析】

連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【詳解】解:連接CD,

作DM⊥BC,DN⊥AC.

∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),

∴DC=AB=1,四邊形DMCN是正方形,DM=.

則扇形FDE的面積是:.

∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),

∴CD平分∠BCA,

又∵DM⊥BC,DN⊥AC,

∴DM=DN,

∵∠GDH=∠MDN=90°,

∴∠GDM=∠HDN,

則在△DMG和△DNH中,,

∴△DMG≌△DNH(AAS),

∴S四邊形DGCH=S四邊形DMCN=.

則陰影部分的面積是:.故答案為:.【點(diǎn)睛】本題考查了三角形的全等的判定與扇形的面積的計(jì)算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵.17、50°【解析】

先根據(jù)三角形外角的性質(zhì)求出∠BEF的度數(shù),再根據(jù)平行線的性質(zhì)得到∠2的度數(shù).【詳解】如圖所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【點(diǎn)睛】考查了平行線的性質(zhì),解題的關(guān)鍵是掌握、運(yùn)用三角形外角的性質(zhì)(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和).三、解答題(共7小題,滿分69分)18、見(jiàn)解析.【解析】

分別作線段CD的垂直平分線和∠AOB的角平分線,它們的交點(diǎn)即為點(diǎn)P.【詳解】如圖,點(diǎn)P為所作.【點(diǎn)睛】本題考查了作圖?應(yīng)用與設(shè)計(jì)作圖,熟知角平分線的性質(zhì)與線段垂直平分線的性質(zhì)是解答此題的關(guān)鍵.19、(1)50(2)36%(3)160【解析】

(1)根據(jù)條形圖的意義,將各組人數(shù)依次相加即可得到答案;(2)根據(jù)條形圖可直接得到最喜歡籃球活動(dòng)的人數(shù),除以(1)中的調(diào)查總?cè)藬?shù)即可得出其所占的百分比;(3)用樣本估計(jì)總體,先求出九年級(jí)占全???cè)藬?shù)的百分比,然后求出全校的總?cè)藬?shù);再根據(jù)最喜歡跳繩活動(dòng)的學(xué)生所占的百分比,繼而可估計(jì)出全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù).【詳解】(1)該校對(duì)名學(xué)生進(jìn)行了抽樣調(diào)查.本次調(diào)查中,最喜歡籃球活動(dòng)的有人,,∴最喜歡籃球活動(dòng)的人數(shù)占被調(diào)查人數(shù)的.(3),人,人.答:估計(jì)全校學(xué)生中最喜歡跳繩活動(dòng)的人數(shù)約為人.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖中各部分占總體的百分比之和為1,直接反映部分占總體的百分比大小.20、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時(shí),函數(shù)解析式為y=,分別令y=0,x=1,即可求得點(diǎn)A和點(diǎn)B的坐標(biāo),進(jìn)而可得到點(diǎn)C的坐標(biāo);(2)先用m表示出P,AC三點(diǎn)的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過(guò)點(diǎn)F作FN⊥PM于N,可得Rt△FNP∽R(shí)t△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形求得E點(diǎn)坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形,分別討論E點(diǎn)再x軸上,y軸上的情況求得E點(diǎn)坐標(biāo).【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對(duì)稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對(duì)稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當(dāng)∠ACP=90°時(shí),PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當(dāng)∠APC=90°時(shí),PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過(guò)點(diǎn)F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽R(shí)t△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點(diǎn),使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(0,﹣4),∴在坐標(biāo)軸上是存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對(duì)稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點(diǎn)的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點(diǎn)E在坐標(biāo)軸上,∴①當(dāng)點(diǎn)E在x軸上時(shí),E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當(dāng)點(diǎn)E在y軸上時(shí),E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).【點(diǎn)睛】本題主要考查二次函數(shù)的圖象與性質(zhì).擴(kuò)展:設(shè)坐標(biāo)系中兩點(diǎn)坐標(biāo)分別為點(diǎn)A(),點(diǎn)B(),則線段AB的長(zhǎng)度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.21、30米【解析】

設(shè)AD=xm,在Rt△ACD中,根據(jù)正切的概念用x表示出CD,在Rt△ABD中,根據(jù)正切的概念列出方程求出x的值即可.【詳解】由題意得,∠ABD=30°,∠ACD=45°,BC=60m,設(shè)AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,在Rt△ABD中,∵tan∠ABD=,∴,∴米,答:山高AD為30米.【點(diǎn)睛】本題考查的是解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.22、(1)y=-2x+31,(2)20≤x≤1【解析】試題分析:(1)根據(jù)函數(shù)圖象經(jīng)過(guò)點(diǎn)(20,300)和點(diǎn)(30,280),利用待定系數(shù)法即可求出y與x的函數(shù)關(guān)系式;

(2)根據(jù)試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克1元,結(jié)合草莓的成本價(jià)即可得出x的取值范圍.試題解析:(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意,得:解得:∴y與x的函數(shù)解析式為y=-2x+31,(2)∵試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克1元,且草

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論