新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)32 橢圓、雙曲線中的焦點(diǎn)三角形問(wèn)題(含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)32 橢圓、雙曲線中的焦點(diǎn)三角形問(wèn)題(含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)32 橢圓、雙曲線中的焦點(diǎn)三角形問(wèn)題(含解析)_第3頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)32 橢圓、雙曲線中的焦點(diǎn)三角形問(wèn)題(含解析)_第4頁(yè)
新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)32 橢圓、雙曲線中的焦點(diǎn)三角形問(wèn)題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

素養(yǎng)拓展32橢圓、雙曲線中的焦點(diǎn)三角形問(wèn)題(精講+精練)一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、橢圓、雙曲線中的焦點(diǎn)三角形面積公式1.如圖1所示,SKIPIF1<0、SKIPIF1<0是橢圓的焦點(diǎn),設(shè)P為橢圓上任意一點(diǎn),記SKIPIF1<0,則SKIPIF1<0的面積SKIPIF1<0.證明:如圖,由余弦定理知SKIPIF1<0.①由橢圓定義知:SKIPIF1<0,②則②·2-①得SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.2.如圖2所示,SKIPIF1<0、SKIPIF1<0是雙曲線的焦點(diǎn),設(shè)P為雙曲線上任意一點(diǎn),記SKIPIF1<0,則SKIPIF1<0的面積SKIPIF1<0.證明:如圖,由余弦定理知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.二、橢圓、雙曲線的焦點(diǎn)三角形中的離心率1.如圖1所示,在焦點(diǎn)三角形背景下求橢圓的離心率,一般結(jié)合橢圓的定義,關(guān)鍵是運(yùn)用已知條件研究出SKIPIF1<0的三邊長(zhǎng)之比或內(nèi)角正弦值之比.公式:SKIPIF1<02.如圖2所示,在焦點(diǎn)三角形背景下求雙曲線的離心率,一般結(jié)合雙曲線的定義,關(guān)鍵是運(yùn)用已知條件研究出SKIPIF1<0的三邊長(zhǎng)之比或內(nèi)角正弦值之比.公式:SKIPIF1<0.二、題型精講精練二、題型精講精練【典例1】設(shè)SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)P在橢圓上,SKIPIF1<0,則SKIPIF1<0的面積為_(kāi)_______.【解析】由焦點(diǎn)三角形面積公式,SKIPIF1<0.【典例2】已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,點(diǎn)P在C上,且SKIPIF1<0,則SKIPIF1<0的面積為_(kāi)_______.【解析】由焦點(diǎn)三角形面積公式,SKIPIF1<0.【典例3】(2018·新課標(biāo)Ⅱ卷)已知SKIPIF1<0、SKIPIF1<0是橢圓C的兩個(gè)焦點(diǎn),P是橢圓C上的一點(diǎn),若SKIPIF1<0,且SKIPIF1<0,則C的離心率為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】解法1:如圖,SKIPIF1<0,SKIPIF1<0,故可設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以C的離心率SKIPIF1<0.解法2:如圖,SKIPIF1<0SKIPIF1<0.【典例4】已知SKIPIF1<0、SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P在C上,SKIPIF1<0,且SKIPIF1<0,則雙曲線C的離心率為_(kāi)______.【解析】解法1:如圖,由題意,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.解法2:如圖,由題意,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.【題型訓(xùn)練-刷模擬】1.橢圓中的焦點(diǎn)三角形①離心率公式的直接應(yīng)用一、填空題1.設(shè)SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),P在C上且SKIPIF1<0軸,若SKIPIF1<0,則橢圓C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,SKIPIF1<0且SKIPIF1<0,故可設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以橢圓C的離心率SKIPIF1<0.解法2:如圖,SKIPIF1<0SKIPIF1<02.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則以B、C為焦點(diǎn),且經(jīng)過(guò)點(diǎn)A的橢圓的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,不妨設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.解法2:如圖,SKIPIF1<0SKIPIF1<0.3.過(guò)橢圓SKIPIF1<0的左焦點(diǎn)SKIPIF1<0作x軸的垂線交橢圓于A、B兩點(diǎn),橢圓的右焦點(diǎn)為SKIPIF1<0,若SKIPIF1<0,則橢圓的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】解法1:如圖,SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.解法2:如圖,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.4.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若以B、C為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)A,則該橢圓的離心率的取值范圍為_(kāi)______.【答案】SKIPIF1<0【解析】解析:如圖,設(shè)SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.5.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則以A、B為焦點(diǎn),且經(jīng)過(guò)點(diǎn)P的橢圓的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,由題意,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.6.設(shè)SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P在C上,且SKIPIF1<0,SKIPIF1<0,則橢圓C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.7.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若以B、C為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)A,則該橢圓的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0橢圓的離心率SKIPIF1<0.8.過(guò)橢圓SKIPIF1<0的左焦點(diǎn)F作x軸的垂線交橢圓C于A、B兩點(diǎn),若SKIPIF1<0是等腰直角三角形,則橢圓C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,設(shè)橢圓C的右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0是等腰直角三角形SKIPIF1<0也是等腰直角三角形,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以橢圓C的離心率SKIPIF1<0.解法2:SKIPIF1<0是等腰直角三角形SKIPIF1<0也是等腰直角三角形,SKIPIF1<0SKIPIF1<0SKIPIF1<0.9.設(shè)SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),過(guò)SKIPIF1<0且斜率為SKIPIF1<0的直線l與橢圓C交于A、B兩點(diǎn),SKIPIF1<0,則橢圓C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】解法l:如圖,直線SKIPIF1<0的斜率為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以橢圓C的離心率SKIPIF1<0.解法2:如圖,直線SKIPIF1<0的斜率為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故橢圓C的離心率SKIPIF1<0.10.設(shè)SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左、右焦點(diǎn),以SKIPIF1<0為直徑的圓與橢圓的4個(gè)交點(diǎn)和SKIPIF1<0、SKIPIF1<0恰好構(gòu)成一個(gè)正六邊形,則橢圓E的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,由題意,SKIPIF1<0是正六邊形,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故橢圓E的離心率SKIPIF1<0.11.已知P、Q為橢圓SKIPIF1<0上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),點(diǎn)P在第一象限,SKIPIF1<0、SKIPIF1<0是橢圓C的左、右焦點(diǎn),SKIPIF1<0,若SKIPIF1<0,則橢圓C的離心率的取值范圍為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,SKIPIF1<0顯然四邊形SKIPIF1<0是矩形,所以SKIPIF1<0,由題意,SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又點(diǎn)P在第一象限,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,橢圓C的離心率SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.②綜合應(yīng)用一、單選題1.設(shè)SKIPIF1<0為橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,若SKIPIF1<0,則SKIPIF1<0(

)A.1 B.2 C.4 D.5【答案】B【分析】方法一:根據(jù)焦點(diǎn)三角形面積公式求出SKIPIF1<0的面積,即可解出;方法二:根據(jù)橢圓的定義以及勾股定理即可解出.【詳解】方法一:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0.故選:B.方法二:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由橢圓方程可知,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,平方得:SKIPIF1<0,所以SKIPIF1<0.故選:B.2.已知SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),且SKIPIF1<0.若SKIPIF1<0的面積為9,則實(shí)數(shù)SKIPIF1<0的值為(

)A.3 B.4 C.5 D.6【答案】A【分析】根據(jù)橢圓的性質(zhì)、三角形面積公式以及勾股定理,利用完全平方公式,可得答案.【詳解】由題意,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,整理可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:A.3.已知SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上的一點(diǎn),則SKIPIF1<0內(nèi)切圓半徑的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由橢圓定義得到SKIPIF1<0,從而利用面積列出方程,得到SKIPIF1<0,求出SKIPIF1<0的內(nèi)切圓半徑的最大值.【詳解】設(shè)SKIPIF1<0內(nèi)切圓的半徑為SKIPIF1<0,由題意得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0為橢圓SKIPIF1<0上的一點(diǎn),故SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:C4.已知點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,點(diǎn)SKIPIF1<0分別為橢圓SKIPIF1<0的左?右焦點(diǎn),并滿足SKIPIF1<0面積等于4,則SKIPIF1<0等于(

)A.2 B.4 C.8 D.16【答案】C【分析】根據(jù)SKIPIF1<0,得到SKIPIF1<0三點(diǎn)共圓,且SKIPIF1<0,再根據(jù)SKIPIF1<0面積等于4,結(jié)合橢圓的定義求解.【詳解】如圖所示:由條件可知SKIPIF1<0三點(diǎn)共圓.且以SKIPIF1<0為直徑.故SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0在橢圓上,所以SKIPIF1<0,聯(lián)立以上式子可解得:SKIPIF1<0,故選:C.5.已知一個(gè)離心率為SKIPIF1<0,長(zhǎng)軸長(zhǎng)為4的橢圓,其兩個(gè)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,在橢圓上存在一個(gè)點(diǎn)P,使得SKIPIF1<0,設(shè)SKIPIF1<0的內(nèi)切圓半徑為r,則r的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】在SKIPIF1<0中,利用余弦定理求得SKIPIF1<0,再由SKIPIF1<0求解.【詳解】解:因?yàn)闄E圓的離心率為SKIPIF1<0,長(zhǎng)軸長(zhǎng)為4,所以SKIPIF1<0,在SKIPIF1<0中,由余弦定理得:SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故選:D6.已知SKIPIF1<0是橢圓E的兩個(gè)焦點(diǎn),P是E上的一點(diǎn),若SKIPIF1<0,且SKIPIF1<0,則E的離心率為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0得焦點(diǎn)三角形為直角三角形,結(jié)合勾股定理與橢圓定義可得SKIPIF1<0,再由面積公式SKIPIF1<0可得齊次方程,進(jìn)而求出離心率【詳解】由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,由橢圓定義可知:SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故E的離心率為SKIPIF1<0.故選:C.7.設(shè)O為坐標(biāo)原點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)P在C上,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】方法一:根據(jù)焦點(diǎn)三角形面積公式求出SKIPIF1<0的面積,即可得到點(diǎn)SKIPIF1<0的坐標(biāo),從而得出SKIPIF1<0的值;方法二:利用橢圓的定義以及余弦定理求出SKIPIF1<0,再結(jié)合中線的向量公式以及數(shù)量積即可求出;方法三:利用橢圓的定義以及余弦定理求出SKIPIF1<0,即可根據(jù)中線定理求出.【詳解】方法一:設(shè)SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,解得:SKIPIF1<0,由橢圓方程可知,SKIPIF1<0,所以,SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0.故選:B.方法二:因?yàn)镾KIPIF1<0①,SKIPIF1<0,即SKIPIF1<0②,聯(lián)立①②,解得:SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:B.方法三:因?yàn)镾KIPIF1<0①,SKIPIF1<0,即SKIPIF1<0②,聯(lián)立①②,解得:SKIPIF1<0,由中線定理可知,SKIPIF1<0,易知SKIPIF1<0,解得:SKIPIF1<0.故選:B.8.SKIPIF1<0,SKIPIF1<0是橢圓C的兩個(gè)焦點(diǎn),P是橢圓C上異于頂點(diǎn)的一點(diǎn),I是SKIPIF1<0的內(nèi)切圓圓心,若SKIPIF1<0的面積等于SKIPIF1<0的面積的4倍,則橢圓C的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)SKIPIF1<0,SKIPIF1<0的周長(zhǎng)為l,由橢圓的定義可得SKIPIF1<0,根據(jù)面積法求得SKIPIF1<0的內(nèi)切圓半徑SKIPIF1<0,又SKIPIF1<0的面積等于SKIPIF1<0的面積的4倍,列出方程可得SKIPIF1<0的關(guān)系,從而可得離心率.【詳解】設(shè)橢圓方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是橢圓C的兩個(gè)焦點(diǎn),P是橢圓C上異于頂點(diǎn)的一點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的周長(zhǎng)為l,由橢圓的定義可得SKIPIF1<0,SKIPIF1<0的內(nèi)切圓半徑SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0解得:SKIPIF1<0,即離心率SKIPIF1<0.故選:A9.設(shè)F1,F(xiàn)2是橢圓C:SKIPIF1<0=1(a>b>0)的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓C上,延長(zhǎng)PF2交橢圓C于點(diǎn)Q,且|PF1|=|PQ|,若SKIPIF1<0PF1F2的面積為SKIPIF1<0,則SKIPIF1<0=(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用焦點(diǎn)三角形的面積公式及橢圓的定義可得SKIPIF1<0,進(jìn)一步得SKIPIF1<0F1PQ為等邊三角形,且SKIPIF1<0軸,從而可得解.【詳解】由橢圓的定義,SKIPIF1<0,由余弦定理有:SKIPIF1<0SKIPIF1<0,化簡(jiǎn)整理得:SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,由以上兩式可得:SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0F1PQ為等邊三角形,由橢圓對(duì)稱性可知SKIPIF1<0軸,所以SKIPIF1<0.故選:B.10.已知SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左,右焦點(diǎn),若在橢圓SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0的面積等于SKIPIF1<0,則橢圓SKIPIF1<0的離心率SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用三角形的面積公式,結(jié)合橢圓的定義和基本不等式求解即可.【詳解】由題意得SKIPIF1<0,而SKIPIF1<0,則有SKIPIF1<0,由橢圓定義可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),于是有SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,即有SKIPIF1<0,所以橢圓SKIPIF1<0的離心率SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.11.已知SKIPIF1<0,SKIPIF1<0分別是橢圓E:SKIPIF1<0(SKIPIF1<0)的左、右焦點(diǎn),點(diǎn)M在橢圓E上,SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則橢圓E的離心率e的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由橢圓的定義與三角形的面積公式即可列出關(guān)于SKIPIF1<0,SKIPIF1<0的方程,利用基本不等式即可列出關(guān)于a,c的不等式,即可求出離心率e的取值范圍;【詳解】由橢圓的定義知,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),∴SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,故選:D.12.已知SKIPIF1<0是橢圓SKIPIF1<0的左?右焦點(diǎn),點(diǎn)SKIPIF1<0是橢圓上的一個(gè)動(dòng)點(diǎn),若SKIPIF1<0的內(nèi)切圓半徑的最大值是SKIPIF1<0,則橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】依題意可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0內(nèi)切圓的半徑為SKIPIF1<0,根據(jù)等面積法得到SKIPIF1<0,即可得到SKIPIF1<0的最大值,從而求出SKIPIF1<0,即可求出橢圓的離心率;【詳解】解:由橢圓SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,如圖,設(shè)SKIPIF1<0內(nèi)切圓的半徑為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,要使SKIPIF1<0內(nèi)切圓半徑最大,則需SKIPIF1<0最大,SKIPIF1<0,又SKIPIF1<0內(nèi)切圓半徑的最大值為SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.則橢圓的離心率SKIPIF1<0故選:B.二、填空題13.已知橢圓SKIPIF1<0SKIPIF1<0的兩個(gè)焦點(diǎn)分別為SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓上,若SKIPIF1<0,則SKIPIF1<0的面積為.【答案】3【分析】根據(jù)已知可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.根據(jù)橢圓的定義有SKIPIF1<0,根據(jù)SKIPIF1<0有SKIPIF1<0.即可求出SKIPIF1<0,進(jìn)而求出三角形的面積.【詳解】由已知可得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0在橢圓上,由橢圓的定義可得,SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0為直角三角形,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:3.14.SKIPIF1<0為橢圓SKIPIF1<0上的一點(diǎn),SKIPIF1<0和SKIPIF1<0是其左右焦點(diǎn),若SKIPIF1<0,則SKIPIF1<0的面積為.【答案】SKIPIF1<0【分析】先利用橢圓定義和余弦定理證明焦點(diǎn)三角形的面積公式,再代入數(shù)據(jù)計(jì)算即可.【詳解】設(shè)SKIPIF1<0,由橢圓定義SKIPIF1<0在SKIPIF1<0中,由余弦定理得SKIPIF1<0.即SKIPIF1<0所以,SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<0.由題知SKIPIF1<0故答案為:SKIPIF1<015.設(shè)點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0上的點(diǎn),SKIPIF1<0,SKIPIF1<0是該橢圓的兩個(gè)焦點(diǎn),若SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】在SKIPIF1<0中,利用余弦定理結(jié)合橢圓的定義建立含SKIPIF1<0的關(guān)系等式,再與三角形面積關(guān)系聯(lián)立即可求解.【詳解】在橢圓SKIPIF1<0中,長(zhǎng)半軸SKIPIF1<0,半焦距SKIPIF1<0,由橢圓定義得SKIPIF1<0,在SKIPIF1<0中,由余弦定理得:SKIPIF1<0,即:SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,于是得SKIPIF1<0,兩邊平方得SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<016.已知點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0上的點(diǎn),點(diǎn)SKIPIF1<0是橢圓的兩個(gè)焦點(diǎn),若SKIPIF1<0中有一個(gè)角的大小為SKIPIF1<0,則SKIPIF1<0的面積為.【答案】SKIPIF1<0或SKIPIF1<0/SKIPIF1<0或SKIPIF1<0【分析】由橢圓方程可求得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由焦點(diǎn)三角形面積公式可求得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),利用余弦定理可構(gòu)造方程求得SKIPIF1<0,由三角形面積公式可得結(jié)果.【詳解】由橢圓方程知:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由余弦定理得:SKIPIF1<0SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0;同理可得:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.綜上所述:SKIPIF1<0的面積為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.17.已知橢圓SKIPIF1<0的兩個(gè)焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓上,若SKIPIF1<0,且SKIPIF1<0的面積為4,則橢圓的標(biāo)準(zhǔn)方程為.【答案】SKIPIF1<0【分析】由題意得到SKIPIF1<0為直角三角形.設(shè)SKIPIF1<0,SKIPIF1<0,根據(jù)橢圓的離心率,定義,直角三角形的面積公式,勾股定理建立方程SKIPIF1<0的方程組,消元后可求得SKIPIF1<0的值.【詳解】由題可知SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,代入上式整理得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0為直角三角形.又SKIPIF1<0的面積為4,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0解得SKIPIF1<0所以橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.18.已知橢圓C:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,第一象限點(diǎn)P在C上,且SKIPIF1<0,則SKIPIF1<0的內(nèi)切圓半徑為.【答案】SKIPIF1<0【分析】由題意列方程組解出SKIPIF1<0點(diǎn)坐標(biāo),由面積與周長(zhǎng)關(guān)系求內(nèi)切圓半徑【詳解】由已知條件得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(-1,0),SKIPIF1<0(1,0).設(shè)點(diǎn)P的坐標(biāo)為(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0①,∵第一象限點(diǎn)P在C上,∴則SKIPIF1<0,即SKIPIF1<0②,聯(lián)立解得SKIPIF1<0由橢圓的定義得SKIPIF1<0設(shè)SKIPIF1<0的內(nèi)切圓半徑為r,則SKIPIF1<0又∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<019.已知橢圓SKIPIF1<0的兩個(gè)焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓上,若SKIPIF1<0,且SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的方程為.【答案】SKIPIF1<0【分析】利用橢圓的定義、余弦定理結(jié)合三角形的面積公式可求得SKIPIF1<0的值,結(jié)合橢圓的離心率可求得SKIPIF1<0的值,即可得出橢圓SKIPIF1<0的方程.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,由橢圓的定義可得SKIPIF1<0,由余弦定理可得SKIPIF1<0SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,又因?yàn)镾KIPIF1<0,可得SKIPIF1<0.因此,橢圓SKIPIF1<0的方程為SKIPIF1<0.故答案為:SKIPIF1<0.20.SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0是橢圓SKIPIF1<0上異于頂點(diǎn)的一點(diǎn),SKIPIF1<0是SKIPIF1<0的內(nèi)切圓圓心,若SKIPIF1<0的面積等于SKIPIF1<0的面積的3倍,則橢圓SKIPIF1<0的離心率為.【答案】SKIPIF1<0【分析】先由SKIPIF1<0求得SKIPIF1<0,再利用SKIPIF1<0求得SKIPIF1<0,即可求出離心率.【詳解】由于橢圓關(guān)于原點(diǎn)對(duì)稱,不妨設(shè)點(diǎn)SKIPIF1<0在SKIPIF1<0軸上方.設(shè)點(diǎn)SKIPIF1<0縱坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0縱坐標(biāo)為SKIPIF1<0,內(nèi)切圓半徑為SKIPIF1<0,橢圓長(zhǎng)軸長(zhǎng)為SKIPIF1<0,焦距為SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,可得離心率為SKIPIF1<0.故答案為:SKIPIF1<0.21.已知橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,若橢圓SKIPIF1<0上存在點(diǎn)SKIPIF1<0使三角形SKIPIF1<0的面積為SKIPIF1<0,則橢圓SKIPIF1<0的離心率SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0則SKIPIF1<0,可得SKIPIF1<0,再結(jié)合SKIPIF1<0即可求SKIPIF1<0得范圍.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,若存在點(diǎn)SKIPIF1<0使三角形SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,整理可得:SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,所以橢圓SKIPIF1<0的離心率SKIPIF1<0的取值范圍是:SKIPIF1<0,故答案為:SKIPIF1<02.雙曲線中的焦點(diǎn)三角形①離心率公式的直接應(yīng)用一、單選題1.已知SKIPIF1<0、SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)M在E上,SKIPIF1<0與x軸垂直,SKIPIF1<0,則E的離心率為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】A【解析】解法1:如圖,不妨設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.解法2:SKIPIF1<0SKIPIF1<0.二、填空題2.已知SKIPIF1<0、SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),過(guò)SKIPIF1<0且與x軸垂直的直線與雙曲線C交于A、B兩點(diǎn),若SKIPIF1<0是等腰直角三角形,則雙曲線C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】解法1:SKIPIF1<0是等腰直角三角形SKIPIF1<0也是等腰直角三角形,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,雙曲線C的離心率SKIPIF1<0.解法2:SKIPIF1<0是等腰直角三角形SKIPIF1<0也是等腰直角三角形,所以SKIPIF1<0.3.已知SKIPIF1<0、SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P在C上,SKIPIF1<0,SKIPIF1<0,則雙曲線C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,由題意,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.4.已知SKIPIF1<0、SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),過(guò)SKIPIF1<0且與x軸垂直的直線與雙曲線C交于A、B兩點(diǎn),若SKIPIF1<0是正三角形,則雙曲線C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】解法1:如圖,SKIPIF1<0是正三角形,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,離心率SKIPIF1<0.解法2:如圖,SKIPIF1<0是正三角形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以雙曲線C的離心率SKIPIF1<0.5.過(guò)雙曲線SKIPIF1<0的左焦點(diǎn)F作x軸的垂線交C于A、B兩點(diǎn),若SKIPIF1<0是等腰直角三角形,則雙曲線C的離心率為_(kāi)______.【答案】SKIPIF1<0【解析】如圖,設(shè)雙曲線C的右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0是等腰直角三角形SKIPIF1<0也是等腰直角三角形,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以C的離心率SKIPIF1<0.②綜合應(yīng)用一、單選題1.已知:雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為其右支上一點(diǎn),若SKIPIF1<0,則SKIPIF1<0的面積是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)雙曲線中,焦點(diǎn)三角形的面積公式求解即可.【詳解】由雙曲線焦點(diǎn)三角形面積公式可得:SKIPIF1<0故選:C.【點(diǎn)睛】本題考查雙曲線焦點(diǎn)三角形面積的求解,屬基礎(chǔ)題.2.已知雙曲線SKIPIF1<0:SKIPIF1<0的左?右焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0上的一點(diǎn),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則雙曲線SKIPIF1<0的離心率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,利用余弦定理求得c,再利用雙曲線的定義求得a即可.【詳解】解:設(shè)雙曲線SKIPIF1<0的半焦距為SKIPIF1<0.由題意,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0的右支上,SKIPIF1<0,SKIPIF1<0,由余弦定理得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,根據(jù)雙曲線定義得SKIPIF1<0,解得SKIPIF1<0,故雙曲線SKIPIF1<0的離心率SKIPIF1<0.故選:D3.設(shè)SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),P為雙曲線上一點(diǎn),且SKIPIF1<0,則SKIPIF1<0的面積等于(

)A.6 B.12 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用雙曲線定義結(jié)合已知求出SKIPIF1<0及SKIPIF1<0,再求出焦距SKIPIF1<0即可計(jì)算作答.【詳解】雙曲線SKIPIF1<0的實(shí)半軸長(zhǎng)SKIPIF1<0,半焦距SKIPIF1<0,因此,SKIPIF1<0,因SKIPIF1<0,由雙曲線定義得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,顯然有SKIPIF1<0,即SKIPIF1<0是直角三角形,所以SKIPIF1<0的面積SKIPIF1<0.故選:A4.設(shè)F1,F(xiàn)2是雙曲線C:SKIPIF1<0的兩個(gè)焦點(diǎn),P是雙曲線C上一點(diǎn),若SKIPIF1<0,且△PF1F2的面積為9,則C的離心率等于(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知條件,結(jié)合雙曲線的簡(jiǎn)單性質(zhì)求出SKIPIF1<0,由此可求出雙曲線的離心率.【詳解】因?yàn)镕1,F(xiàn)2是雙曲線C:SKIPIF1<0的兩個(gè)焦點(diǎn),P是雙曲線C上一點(diǎn),若SKIPIF1<0,且△PF1F2的面積為9,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,故雙曲線的離心率為SKIPIF1<0.故選:C.5.設(shè)SKIPIF1<0、SKIPIF1<0分別是雙曲線SKIPIF1<0的左、右焦點(diǎn),過(guò)SKIPIF1<0作SKIPIF1<0軸的垂線與SKIPIF1<0相交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),若SKIPIF1<0為正三角形,則SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出SKIPIF1<0,利用雙曲線的定義求出SKIPIF1<0,進(jìn)而可求得SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論