版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了進(jìn)一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種2.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為則()A. B. C. D.3.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.定義在R上的函數(shù)滿足,為的導(dǎo)函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.5.已知全集,集合,則=()A. B.C. D.6.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.7.已知拋物線:,直線與分別相交于點(diǎn),與的準(zhǔn)線相交于點(diǎn),若,則()A.3 B. C. D.8.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.9.已知是球的球面上兩點(diǎn),,為該球面上的動點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.10.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i11.設(shè),是非零向量,若對于任意的,都有成立,則A. B. C. D.12.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.12 B.10 C.8 D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的平分線交于,,,則面積的最大值為__________.14.已知函數(shù),對于任意都有,則的值為______________.15.已知雙曲線的一條漸近線方程為,則________.16.的展開式中的系數(shù)為________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.18.(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.19.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.20.(12分)已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和.求證:.21.(12分)已知,.(1)解;(2)若,證明:.22.(10分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對稱軸方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先將甲、乙兩人看作一個整體,當(dāng)作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計(jì)數(shù)原理可得選項(xiàng).【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計(jì)數(shù)原理,共有種方案。故選:C.【點(diǎn)睛】本題主要考查排列與組合,常常運(yùn)用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.2.B【解析】
求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運(yùn)算,求得的值.【詳解】易知,則.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對應(yīng),考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.3.B【解析】
先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點(diǎn)睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進(jìn)行判斷.4.C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和不等式的基礎(chǔ)知識,屬于中檔題.5.D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.6.C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.7.C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點(diǎn)如圖,過A,M作準(zhǔn)線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點(diǎn)睛】本題考查求拋物線的焦點(diǎn)弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.8.B【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時,檢驗(yàn)可得,A、C、D都不正確,故選:B.【點(diǎn)睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).9.C【解析】
如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.10.B【解析】
復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.11.D【解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結(jié)合可得結(jié)果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當(dāng),即時,最小,滿足,對于任意的,所以本題答案為D.【點(diǎn)睛】本題主要考查了空間向量的加減法,以及點(diǎn)到直線的距離最短問題,解題的關(guān)鍵在于用有向線段正確表示向量,屬于基礎(chǔ)題.12.B【解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運(yùn)算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運(yùn)算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.15【解析】
由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因?yàn)?,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時取等號所以面積的最大值為15故答案為:15【點(diǎn)睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.14.【解析】
由條件得到函數(shù)的對稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.15.【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.16.【解析】
在二項(xiàng)展開式的通項(xiàng)中令的指數(shù)為,求出參數(shù)值,然后代入通項(xiàng)可得出結(jié)果.【詳解】的展開式的通項(xiàng)為,令,因此,的展開式中的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中指定項(xiàng)系數(shù)的求解,涉及二項(xiàng)展開式通項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點(diǎn)M,連接ME,證明;(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.因?yàn)槠矫?,平面,所以平面.(Ⅱ)因?yàn)槠矫鍭BC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)闉檎切?,所以,又平面平面,平面平面,所以平面ABC.所以點(diǎn)到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點(diǎn)睛】本題考查證明線面平行,計(jì)算體積,意在考查推理證明,空間想象能力,計(jì)算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對邊平行,或是構(gòu)造三角形中位線.18.(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對值寫成分段函數(shù),畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當(dāng)時,即為,解得.當(dāng)時,,解得.當(dāng)時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點(diǎn)睛】本題主要考查含絕對值不等式的解法及含絕對值的函數(shù)的最值問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題19.(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時等號成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時,要注意等號成立的條件,在解題中必須要注明.20.(1)(2)證明見解析【解析】
(1)利用求得數(shù)列的通項(xiàng)公式.(2)先將縮小即,由此結(jié)合裂項(xiàng)求和法、放縮法,證得不等式成立.【詳解】(1)∵,令,得.又,兩式相減,得.∴.(2)∵.又∵,,∴.∴.∴.【點(diǎn)睛】本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21.(1);(2)見解析.【解析】
(1)在不等式兩邊平方化簡轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點(diǎn)睛】本題考查含絕對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高層展覽館施工合同模板
- 電視租賃合同三篇
- 自然災(zāi)害導(dǎo)致理賠客人的協(xié)議書(2篇)
- 團(tuán)建策劃合同
- 集體土地宅基地協(xié)議書范本
- 協(xié)議購車合同范例
- 農(nóng)民承包小麥合同范例
- 院落保潔合同范例
- 木架拆除回收合同范例
- 瀝青購銷合同范例
- 初中美術(shù)八年級上冊服裝設(shè)計(jì)(全國一等獎)
- 導(dǎo)醫(yī)接待與患者情緒管理
- 化工行業(yè)基礎(chǔ)知識培訓(xùn)課件
- 斜拉橋施工技術(shù)
- 《影視行業(yè)無形資產(chǎn)評估的案例分析-以華誼兄弟為例》12000字
- 新課標(biāo)下小學(xué)美術(shù)課程設(shè)計(jì)
- 國開電大操作系統(tǒng)-Linux系統(tǒng)使用-實(shí)驗(yàn)報(bào)告
- 電氣技術(shù)協(xié)議
- 香煙過濾嘴問題論文
- 第五單元整體教學(xué)課件-七年級語文上冊
- 中學(xué)生主題班會課題:科學(xué)素養(yǎng)與創(chuàng)新能力培養(yǎng)
評論
0/150
提交評論