![2024-2025學(xué)年晉中市重點(diǎn)中學(xué)高三三診考試數(shù)學(xué)試題試卷含解析_第1頁](http://file4.renrendoc.com/view3/M03/2B/22/wKhkFma8N3iAdXENAAG_8te0bVM617.jpg)
![2024-2025學(xué)年晉中市重點(diǎn)中學(xué)高三三診考試數(shù)學(xué)試題試卷含解析_第2頁](http://file4.renrendoc.com/view3/M03/2B/22/wKhkFma8N3iAdXENAAG_8te0bVM6172.jpg)
![2024-2025學(xué)年晉中市重點(diǎn)中學(xué)高三三診考試數(shù)學(xué)試題試卷含解析_第3頁](http://file4.renrendoc.com/view3/M03/2B/22/wKhkFma8N3iAdXENAAG_8te0bVM6173.jpg)
![2024-2025學(xué)年晉中市重點(diǎn)中學(xué)高三三診考試數(shù)學(xué)試題試卷含解析_第4頁](http://file4.renrendoc.com/view3/M03/2B/22/wKhkFma8N3iAdXENAAG_8te0bVM6174.jpg)
![2024-2025學(xué)年晉中市重點(diǎn)中學(xué)高三三診考試數(shù)學(xué)試題試卷含解析_第5頁](http://file4.renrendoc.com/view3/M03/2B/22/wKhkFma8N3iAdXENAAG_8te0bVM6175.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年晉中市重點(diǎn)中學(xué)高三三診考試數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B.C.或 D.2.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動,記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.3.設(shè)集合,,若,則的取值范圍是()A. B. C. D.4.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.5.為實現(xiàn)國民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占2019年貧困戶總數(shù)的比)及該項目的脫貧率見下表:實施項目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍6.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.327.五名志愿者到三個不同的單位去進(jìn)行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.8.甲乙兩人有三個不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個學(xué)習(xí)小組,則兩人參加同一個小組的概率為()A.B.C.D.9.設(shè),均為非零的平面向量,則“存在負(fù)數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則的值為()A.2 B.3 C.4 D.11.是拋物線上一點(diǎn),是圓關(guān)于直線的對稱圓上的一點(diǎn),則最小值是()A. B. C. D.12.已知,,若,則向量在向量方向的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記等差數(shù)列和的前項和分別為和,若,則______.14.如果復(fù)數(shù)滿足,那么______(為虛數(shù)單位).15.已知,滿足約束條件,則的最小值為______.16.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(diǎn)(不含端點(diǎn)),且滿足勾股定理,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點(diǎn),滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點(diǎn),使得直線與平面所成角的大小為30°,求的值.18.(12分)已知函數(shù),不等式的解集為.(1)求實數(shù),的值;(2)若,,,求證:.19.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時,證明:.平面(2)當(dāng)四面體的體積最大時,求平面與平面所成銳二面角的余弦值.20.(12分)心形線是由一個圓上的一個定點(diǎn),當(dāng)該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點(diǎn)的軌跡,因其形狀像心形而得名,在極坐標(biāo)系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點(diǎn)為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標(biāo)方程;(2)若曲線與相交于、、三點(diǎn),求線段的長.21.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.22.(10分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對物理學(xué)科的喜好程度,某高中從高一年級學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對選科的認(rèn)識,年級決定召開學(xué)生座談會.現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
首先求出集合,再根據(jù)補(bǔ)集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D本題考查補(bǔ)集的概念及運(yùn)算,一元二次不等式的解法,屬于基礎(chǔ)題.2.A【解析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.3.C【解析】
由得出,利用集合的包含關(guān)系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.本題考查利用集合的包含關(guān)系求參數(shù),考查計算能力,屬于基礎(chǔ)題.4.C【解析】
由程序語言依次計算,直到時輸出即可【詳解】程序的運(yùn)行過程為當(dāng)n=2時,時,,此時輸出.故選:C本題考查由程序框圖計算輸出結(jié)果,屬于基礎(chǔ)題5.B【解析】
設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B本題考查了概率與統(tǒng)計,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6.A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A本題考查了三視圖的簡單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.7.D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.8.A【解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.9.B【解析】
根據(jù)充分條件、必要條件的定義進(jìn)行分析、判斷后可得結(jié)論.【詳解】因為,均為非零的平面向量,存在負(fù)數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立.所以“存在負(fù)數(shù),使得”是“”的充分不必要條件.故選B.判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.10.B【解析】
因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關(guān)于對稱,由,得,,即,又,.故選:B.本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎(chǔ)題.11.C【解析】
求出點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo),進(jìn)而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為點(diǎn),則,整理得,解得,即點(diǎn),所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點(diǎn),則,當(dāng)時,取最小值,因此,.故選:C.本題考查拋物線上一點(diǎn)到圓上一點(diǎn)最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計算能力,屬于中等題.12.B【解析】
由,,,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.本題考查向量投影的幾何意義,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.14.【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,然后利用復(fù)數(shù)模的計算公式求解.【詳解】∵,∴,∴,故答案為:.本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模的求法,屬于基礎(chǔ)題.15.2【解析】
作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時,取得最小值為.故答案為:本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16.【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:本題考查向量的數(shù)量積,重點(diǎn)考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因為是的中點(diǎn),即得證;(Ⅱ)如圖建立空間直角坐標(biāo)系,設(shè),計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點(diǎn),連接,則是平面與平面的交線,因為平面,故,又因為是的中點(diǎn),所以是的中點(diǎn),故.(Ⅱ)由條件可知,,所以,故以為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè),則,設(shè)平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18.(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時等號成立.故,即.考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.19.(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而可得結(jié)論;(2)由題意,當(dāng)點(diǎn)位于點(diǎn)時,四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運(yùn)算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時.則其外接球的半徑為.因為時邊長為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因為,所以為的中點(diǎn).記的中點(diǎn)為,連接,.則,,,所以平面平面.因為平面,所以平面.(2)由題意,平面,則三棱錐的高不變.當(dāng)四面體的體積最大時,的面積最大.所以當(dāng)點(diǎn)位于點(diǎn)時,四面體的體積最大.以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.則,,,,.所以,,,.設(shè)平面的法向量為.則令,得.設(shè)平面的一個法向量為.則令,得.設(shè)平面與平面所成銳二面角是,則.所以當(dāng)四面體的體積最大時,平面與平面所成銳二面角的余弦值為.本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運(yùn)用平面與平面的平行、線面平行的判定,利用好空間向量是關(guān)鍵,屬于基礎(chǔ)題.20.(1)();(2).【解析】
(1)化簡得到直線方程為,再利用極坐標(biāo)公式計算得到答案.(2)聯(lián)立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點(diǎn)且傾斜角為的直線,∴的極坐標(biāo)方程為().(2)由得,∴,由得∴,∴.本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計算能力和應(yīng)用能力.21.(1)(2)【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當(dāng)時,,由此可知,的解集為(2)當(dāng)時,的最小值為和中的最小值,其中,.所以恒成立.當(dāng)時,,且,不恒成立,不符合題意.當(dāng)時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.本小題主要考查絕對值不等式的解法,考查根據(jù)絕對值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.22.(1)有的把握認(rèn)為喜歡物理與性別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球無DEHP分隔膜無針輸液接頭行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球基因組注釋服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球酚醛彩鋼板行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國隧道安全監(jiān)測系統(tǒng)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球燃?xì)廨啓C(jī)仿真軟件行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國自動水力平衡閥行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球辦公室文件柜行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國4-苯氧基苯酚行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球太空級電機(jī)控制器行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國鋰電池梯次利用行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 護(hù)理人文知識培訓(xùn)課件
- 建筑工程施工安全管理課件
- 2025年春新人教版數(shù)學(xué)七年級下冊教學(xué)課件 7.2.3 平行線的性質(zhì)(第1課時)
- 安徽省合肥市2025年高三第一次教學(xué)質(zhì)量檢測地理試題(含答案)
- 2025年新合同管理工作計劃
- 統(tǒng)編版八年級下冊語文第三單元名著導(dǎo)讀《經(jīng)典常談》閱讀指導(dǎo) 學(xué)案(含練習(xí)題及答案)
- 風(fēng)光儲儲能項目PCS艙、電池艙吊裝方案
- 產(chǎn)業(yè)鏈競爭關(guān)聯(lián)度
- TTJSFB 002-2024 綠色融資租賃項目評價指南
- 高考地理一輪復(fù)習(xí)學(xué)案+區(qū)域地理填圖+亞洲
- 全新車位轉(zhuǎn)讓協(xié)議模板下載(2024版)
評論
0/150
提交評論