2024-2025學年清華大學附中高三第二學期綜合練習(一)數(shù)學試題含解析_第1頁
2024-2025學年清華大學附中高三第二學期綜合練習(一)數(shù)學試題含解析_第2頁
2024-2025學年清華大學附中高三第二學期綜合練習(一)數(shù)學試題含解析_第3頁
2024-2025學年清華大學附中高三第二學期綜合練習(一)數(shù)學試題含解析_第4頁
2024-2025學年清華大學附中高三第二學期綜合練習(一)數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024-2025學年清華大學附中高三第二學期綜合練習(一)數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.2.設(shè),則()A. B. C. D.3.函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實數(shù)的值為()A. B. C.2 D.4.二項式展開式中,項的系數(shù)為()A. B. C. D.5.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.6.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④7.已知函數(shù),,若存在實數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.8.設(shè)函數(shù),當時,,則()A. B. C.1 D.9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.點為的三條中線的交點,且,,則的值為()A. B. C. D.11.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.12.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開式中的系數(shù)為__14.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.15.設(shè)滿足約束條件,則的取值范圍為__________.16.在中,角,,的對邊分別是,,,若,,則的面積的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.18.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.19.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標原點,且橢圓與的離心率均為.(Ⅰ)求橢圓與橢圓的標準方程;(Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當?shù)拿娣e取最大值時,求兩直線MA,MB斜率的比值.21.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數(shù)根,且,證明:.22.(10分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由復數(shù)的幾何意義可得表示復數(shù),對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數(shù)的幾何意義可得,復數(shù)對應的點為,復數(shù)對應的點為,所以,其中,故選C本題主要考查復數(shù)的幾何意義,由復數(shù)的幾何意義,將轉(zhuǎn)化為兩復數(shù)所對應點的距離求值即可,屬于基礎(chǔ)題型.2.D【解析】

結(jié)合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應用,屬于基礎(chǔ)題.3.C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時,取得最大值,即,,,當時,解得,故選C.點睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時,取得最大值,求解可得實數(shù)的值.4.D【解析】

寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D本題主要考查了二項式定理的運算,屬于基礎(chǔ)題.5.D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.本小題主要考查對數(shù)運算,屬于基礎(chǔ)題.6.D【解析】

利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.7.A【解析】

根據(jù)實數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當且僅當,即當時,等號成立,∴,∴.故選:A.本題考查了導數(shù)在求函數(shù)最值中的應用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.8.A【解析】

由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.9.A【解析】

利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.10.B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.11.B【解析】

甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎(chǔ).12.A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13.1.【解析】

由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù).【詳解】∵已知,則,

它表示4個因式的乘積.

故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.

故展開式中的系數(shù).

故答案為:1.本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題.14.【解析】

將四面體補成一個正方體,通過正方體的對角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設(shè)球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎(chǔ)題.15.【解析】

由題意畫出可行域,轉(zhuǎn)化目標函數(shù)為,數(shù)形結(jié)合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉(zhuǎn)化目標函數(shù)為,通過平移直線,數(shù)形結(jié)合可知:當直線過點A時,直線截距最大,z最??;當直線過點C時,直線截距最小,z最大.由可得,由可得,當直線過點時,;當直線過點時,,所以.故答案為:.本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.16.【解析】

化簡得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當時等號成立,故.故答案為:.本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學生的綜合應用能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)1;(2)5.【解析】

(1)由同角三角函數(shù)關(guān)系求得,再由兩角差的正弦公式求得,最后由正弦定理構(gòu)建方程,求得答案.(2)在中,由正弦定理構(gòu)建方程求得AB,再由任意三角形的面積公式構(gòu)建方程求得BC,最后由余弦定理構(gòu)建方程求得AC.【詳解】(1)據(jù)題意,,且,所以.所以.在中,據(jù)正弦定理可知,,所以.(2)在中,據(jù)正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據(jù)余弦定理可知,,所以.本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數(shù)關(guān)系和兩角差的正弦公式化簡求值,屬于簡單題.18.(1);(2)證明見解析.【解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當時,等價于,該不等式恒成立,當時,等價于,該不等式解集為,當時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因為,,,所以,,,所以,當且僅當時等號成立.本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.19.(1)見解析;(2).【解析】

(1)取的中點,連接,通過證明,即可證得;(2)建立空間直角坐標系,利用向量的坐標表示即可得解.【詳解】(1)證明:取的中點,連接.是的中點,,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設(shè),則,建立空間直角坐標系.設(shè)平面的法向量為,則,則,取.直線與平面所成角的正弦值為.此題考查證明線面平行,求線面角的大小,關(guān)鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據(jù)公式準確計算.20.(1),(2)【解析】分析:(1)根據(jù)題的條件,得到對應的橢圓的上頂點,即可以求得橢圓中相應的參數(shù),結(jié)合橢圓的離心率的大小,求得相應的參數(shù),從而求得橢圓的方程;(2)設(shè)出一條直線的方程,與橢圓的方程聯(lián)立,消元,利用求根公式求得對應點的坐標,進一步求得向量的坐標,將S表示為關(guān)于k的函數(shù)關(guān)系,從眼角函數(shù)的角度去求最值,從而求得結(jié)果.詳解:(Ⅰ)依題意得對:,,得:;同理:.(Ⅱ)設(shè)直線的斜率分別為,則MA:,與橢圓方程聯(lián)立得:,得,得,,所以同理可得.所以,從而可以求得因為,所以,不妨設(shè),所以當最大時,,此時兩直線MA,MB斜率的比值.點睛:該題考查的是有關(guān)橢圓與直線的綜合題,在解題的過程中,注意橢圓的對稱性,以及其特殊性,與y軸的交點即為橢圓的上頂點,結(jié)合橢圓焦點所在軸,得到相應的參數(shù)的值,再者就是應用離心率的大小找參數(shù)之間的關(guān)系,在研究直線與橢圓相交的問題時,首先設(shè)出直線的方程,與橢圓的方程聯(lián)立,求得結(jié)果,注意從函數(shù)的角度研究問題.21.(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】

(Ⅰ)根據(jù)導數(shù)的幾何意義求解即可.(Ⅱ)求導分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點處的切線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論