新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題04 構(gòu)造函數(shù)法解決不等式問題(典型題型歸類訓(xùn)練) 解析版_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題04 構(gòu)造函數(shù)法解決不等式問題(典型題型歸類訓(xùn)練) 解析版_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題04 構(gòu)造函數(shù)法解決不等式問題(典型題型歸類訓(xùn)練) 解析版_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題04 構(gòu)造函數(shù)法解決不等式問題(典型題型歸類訓(xùn)練) 解析版_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題04 構(gòu)造函數(shù)法解決不等式問題(典型題型歸類訓(xùn)練) 解析版_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題04構(gòu)造函數(shù)法解決不等式問題(典型題型歸類訓(xùn)練)目錄TOC\o"1-2"\h\u一、必備秘籍 1二、典型題型 2題型一:構(gòu)造SKIPIF1<0或SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)型 2題型二:構(gòu)造SKIPIF1<0或SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)型 5題型三:構(gòu)造SKIPIF1<0或SKIPIF1<0型 7題型四:構(gòu)造SKIPIF1<0或SKIPIF1<0型 10三、專項訓(xùn)練 11一、必備秘籍1、兩個基本還原①SKIPIF1<0②SKIPIF1<02、類型一:構(gòu)造可導(dǎo)積函數(shù)①SKIPIF1<0高頻考點(diǎn)1:SKIPIF1<0②SKIPIF1<0高頻考點(diǎn)1:SKIPIF1<0高頻考點(diǎn)2SKIPIF1<0③SKIPIF1<0高頻考點(diǎn)1:SKIPIF1<0④SKIPIF1<0高頻考點(diǎn)1:SKIPIF1<0高頻考點(diǎn)2SKIPIF1<0⑤SKIPIF1<0⑥SKIPIF1<0序號條件構(gòu)造函數(shù)1SKIPIF1<0SKIPIF1<02SKIPIF1<0SKIPIF1<03SKIPIF1<0SKIPIF1<04SKIPIF1<0SKIPIF1<05SKIPIF1<0SKIPIF1<06SKIPIF1<0SKIPIF1<07SKIPIF1<0SKIPIF1<08SKIPIF1<0SKIPIF1<03、類型二:構(gòu)造可商函數(shù)①SKIPIF1<0高頻考點(diǎn)1:SKIPIF1<0②SKIPIF1<0高頻考點(diǎn)1:SKIPIF1<0高頻考點(diǎn)2:SKIPIF1<0③SKIPIF1<0⑥SKIPIF1<0二、典型題型題型一:構(gòu)造SKIPIF1<0或SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)型1.(2023下·重慶榮昌·高二重慶市榮昌中學(xué)校??计谥校┒x在SKIPIF1<0上的偶函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0.則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又函數(shù)SKIPIF1<0為偶函數(shù),所以SKIPIF1<0為偶函數(shù),所以SKIPIF1<0在在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,A選項錯誤;SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,B選項錯誤;SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,C選項錯誤;SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,D選項正確;故選:D.2.(2023下·四川綿陽·高二鹽亭中學(xué)??茧A段練習(xí))若函數(shù)SKIPIF1<0滿足SKIPIF1<0在SKIPIF1<0上恒成立,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,可知SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是增函數(shù),又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選:B.3.(2023下·陜西咸陽·高二統(tǒng)考期中)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∵當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.故選:D.4.(2023·甘肅張掖·甘肅省民樂縣第一中學(xué)??寄M預(yù)測)已知SKIPIF1<0為偶函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的導(dǎo)數(shù),則不等式SKIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】令函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,由SKIPIF1<0為偶函數(shù),得SKIPIF1<0,即函數(shù)SKIPIF1<0是奇函數(shù),于是SKIPIF1<0在R上單調(diào)遞減,不等式SKIPIF1<0,因此SKIPIF1<0,解得SKIPIF1<0,所以原不等式的解集是SKIPIF1<0.故答案為:SKIPIF1<05.(2023上·黑龍江·高三黑龍江實(shí)驗中學(xué)??茧A段練習(xí))已知SKIPIF1<0是定義域為SKIPIF1<0的偶函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則使得SKIPIF1<0成立的SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】記SKIPIF1<0,則SKIPIF1<0,故當(dāng)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又當(dāng)SKIPIF1<0時,SKIPIF1<0,因此SKIPIF1<0為SKIPIF1<0奇函數(shù),故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,因此當(dāng)SKIPIF1<0和SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0和SKIPIF1<0時,SKIPIF1<0,因此SKIPIF1<0,即可得SKIPIF1<0和SKIPIF1<0,故SKIPIF1<0成立的SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0題型二:構(gòu)造SKIPIF1<0或SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)型1.(2023上·福建莆田·高三莆田一中??计谥校┮阎x域為R的函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【詳解】令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0,故A不正確;SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故B不正確;SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故C正確;SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故D不正確;故選:C2.(2023上·四川內(nèi)江·高三期末)已知SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),SKIPIF1<0,其中SKIPIF1<0是自然對數(shù)的底數(shù),對任意SKIPIF1<0,恒有SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】依題意,令函數(shù)SKIPIF1<0,SKIPIF1<0,求導(dǎo)得SKIPIF1<0,則函數(shù)SKIPIF1<0在R上單調(diào)遞增,SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,因此有SKIPIF1<0,解得SKIPIF1<0,所以原不等式的解集為SKIPIF1<0.故選:C3.(2023下·河南洛陽·高二統(tǒng)考期末)已知SKIPIF1<0是定義在R上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù),對于任意的實(shí)數(shù)x,都有SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,根據(jù)偶函數(shù)對稱區(qū)間上單調(diào)性相反的性質(zhì)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故數(shù)a的取值范圍為:SKIPIF1<0故選:B.4.(2023上·新疆伊犁·高三奎屯市第一高級中學(xué)??茧A段練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且有SKIPIF1<0,則SKIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在R上單調(diào)遞增.又SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0等價于SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即所求不等式的解集為SKIPIF1<0.故答案為:SKIPIF1<0.5.(2018上·江西贛州·高三統(tǒng)考期中)函數(shù)SKIPIF1<0的定義域和值域均為SKIPIF1<0,SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0>0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0<SKIPIF1<0?SKIPIF1<0<SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0>SKIPIF1<0?SKIPIF1<0>SKIPIF1<0綜上,SKIPIF1<0<SKIPIF1<0且

SKIPIF1<0>SKIPIF1<0.故答案為:SKIPIF1<0題型三:構(gòu)造SKIPIF1<0或SKIPIF1<0型1.(2023下·四川成都·高二期末)記函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0為奇函數(shù),且當(dāng)SKIPIF1<0時恒有SKIPIF1<0成立,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時恒有SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,選項A錯誤;SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,選項B正確;SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,選項C錯誤;由SKIPIF1<0得SKIPIF1<0,選項D錯誤;故選:B2.(2023·青海海東·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0是奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,故g(x)在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.又f(x)是奇函數(shù),所以SKIPIF1<0是偶函數(shù),故SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0與SKIPIF1<0和SKIPIF1<0的大小關(guān)系不確定.故選:A.3.(2023上·云南昆明·高三昆明一中??茧A段練習(xí))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),則SKIPIF1<0,所以SKIPIF1<0為偶函數(shù).當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,由已知SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0可化為SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0為偶函數(shù),則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,得SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0.題型四:構(gòu)造SKIPIF1<0或SKIPIF1<0型1.(2023·全國·模擬預(yù)測)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立(SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)),若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意得函數(shù)SKIPIF1<0為偶函數(shù),構(gòu)造函數(shù)SKIPIF1<0,所以SKIPIF1<0,易知當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.因為SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選:C.2.(2023下·山東聊城·高二校考階段練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,已知SKIPIF1<0是它的導(dǎo)函數(shù),且恒有SKIPIF1<0成立,則有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故選:C三、專項訓(xùn)練一、單選題1.(2023上·上海徐匯·高三上海市第二中學(xué)校考期中)已知定義在R上的函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0都有SKIPIF1<0,則下列各式恒成立的是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】B【詳解】記SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在R上單調(diào)遞增,故SKIPIF1<0,SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0.故選:B2.(2023·河南開封·統(tǒng)考三模)設(shè)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,理由如下:如圖,設(shè)SKIPIF1<0,射線SKIPIF1<0與單位圓相交于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0⊥SKIPIF1<0軸于點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0⊥SKIPIF1<0軸交射線SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,設(shè)扇形SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,其中SKIPIF1<0,故SKIPIF1<0,∴SKIPIF1<0.故選:C3.(2023下·云南保山·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時不等式SKIPIF1<0成立,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】構(gòu)造函數(shù)SKIPIF1<0,則由題意可知當(dāng)SKIPIF1<0時SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,又因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0正確.故選:SKIPIF1<0.4.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0在R上可導(dǎo),且滿足SKIPIF1<0恒成立,常數(shù)SKIPIF1<0則下列不等式一定成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】令SKIPIF1<0,則SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.故選:A5.(2023·全國·高三對口高考)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時不等式SKIPIF1<0成立,若SKIPIF1<0,則SKIPIF1<0的大小關(guān)系是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】構(gòu)造函數(shù)SKIPIF1<0,則由題意可知當(dāng)SKIPIF1<0時SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,又因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選:B6.(2023·全國·高三對口高考)已知SKIPIF1<0是定義在SKIPIF1<0上的非負(fù)可導(dǎo)函數(shù),且滿足SKIPIF1<0,對任意正數(shù)a、b,若SKIPIF1<0,則必有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由SKIPIF1<0.若SKIPIF1<0不是常函數(shù),則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0為常函數(shù),則SKIPIF1<0.綜上,SKIPIF1<0.故選:A7.(2023·云南·校聯(lián)考三模)設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0上的導(dǎo)數(shù)存在,且SKIPIF1<0,則當(dāng)SKIPIF1<0時,(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0.故選:B8.(2023下·湖北·高二校聯(lián)考期中)已知函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0,則不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】根據(jù)題意,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在R上單調(diào)遞增,又SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D.9.(2023下·湖北武漢·高二武漢市洪山高級中學(xué)校聯(lián)考期中)設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0是其導(dǎo)函數(shù),若SKIPIF1<0,SKIPIF1<0,則不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0可化為SKIPIF1<0,又SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,所以不等式SKIPIF1<0的解集是SKIPIF1<0.故選:B10.(2023下·湖北武漢·高二華中師大一附中??计谥校㏒KIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時,有SKIPIF1<0恒成立,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,又SKIPIF1<0是偶函數(shù),且SKIPIF1<0是定義在R上的奇函數(shù),所以SKIPIF1<0是定義在R上的奇函數(shù),則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,故A錯誤;SKIPIF1<0,即SKIPIF1<0,故B錯誤;SKIPIF1<0,即SKIPIF1<0,故C正確;SKIPIF1<0,即SKIPIF1<0,故錯誤,故選:C11.(2023下·河北張家口·高二校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上連續(xù)且可導(dǎo),同時滿足SKIPIF1<0,則下列不等式一定成立的為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C二、填空題12.(2023上·河南焦作·高三統(tǒng)考開學(xué)考試)已知定義在R上的函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則滿足不等式SKIPIF1<0的x的取值范圍是.【答案】SKIPIF1<0【詳解】由題意,對任意SKIPIF1<0,都有SKIPIF1<0成立,即SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.不等式SKIPIF1<0即SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.故由SKIPIF1<0,得SKIPIF1<0.所以不等式SKIPIF1<0的解集為SKIPIF1<0,故答案為:SKIPIF1<0.13.(2023下·湖北咸寧·高二鄂南高中??茧A段練習(xí))已知偶函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的可導(dǎo)函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,可得SKIPIF1<0因為SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0為單調(diào)遞增函數(shù),又因為函數(shù)SKIPIF1<0為偶函數(shù),可得SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),所以SKIPIF1<0在SKIPIF1<0為單調(diào)遞減函數(shù),因為SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即不等式的解集為SKIPIF1<0.故答案為:SKIPIF1<0.14.(2021下·江蘇鎮(zhèn)江·高一江蘇省丹陽高級中學(xué)校考期中)函數(shù)SKIPIF1<0定義域為SKIPIF1<0,其導(dǎo)函數(shù)是SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0,故答案為:SKIPIF1<015.(2022下·江蘇·高二校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,其導(dǎo)函數(shù)是SKIPIF1<0,若SKIPIF1<0,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為.【答案】SKIPIF1<0【詳解】SKIPIF1<0變形為SKIPIF1<0,SKIPIF1<0變形為SKIPIF1<0,故可令g(x)=f(x)sinx,SKIPIF1<0,則SKIPIF1<0,∴g(x)在SKIPIF1<0單調(diào)遞減,不等式SKIPIF1<0即為g(x)<g(SKIPIF1<0),則SKIPIF1<0,故答案為:SKIPIF1<0.16.(2021下·重慶江津·高二校考期中)已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,當(dāng)SKIPIF1<0時,有SKIPIF1<0,且SKIPIF1<0,則使得SKIPIF1<0成立的SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】∵當(dāng)SKIPIF1<0時,有SKIPIF1<0,令SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上遞增,又∵SKIPIF1<0在SKIPIF1<0上的偶函數(shù)∴SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上是奇函數(shù)∴SKIPIF1<0在SKIPIF1<0上遞增,又∵SKIPIF1<0,∴SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,此時,0<x<1,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時,SKIPIF1<0,∴SKIPIF1<0成立的SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0﹒17.(2021下·山東濟(jì)南·高二山東師范大學(xué)附中??计谥校┰O(shè)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且對任意正數(shù)SKIPIF1<0均有SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關(guān)系是【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論