2024-2025學(xué)年河北省張家口市尚義一中下學(xué)期高三數(shù)學(xué)試題第二次階段檢測試題考試試卷含解析_第1頁
2024-2025學(xué)年河北省張家口市尚義一中下學(xué)期高三數(shù)學(xué)試題第二次階段檢測試題考試試卷含解析_第2頁
2024-2025學(xué)年河北省張家口市尚義一中下學(xué)期高三數(shù)學(xué)試題第二次階段檢測試題考試試卷含解析_第3頁
2024-2025學(xué)年河北省張家口市尚義一中下學(xué)期高三數(shù)學(xué)試題第二次階段檢測試題考試試卷含解析_第4頁
2024-2025學(xué)年河北省張家口市尚義一中下學(xué)期高三數(shù)學(xué)試題第二次階段檢測試題考試試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年河北省張家口市尚義一中下學(xué)期高三數(shù)學(xué)試題第二次階段檢測試題考試試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.2.方程的實(shí)數(shù)根叫作函數(shù)的“新駐點(diǎn)”,如果函數(shù)的“新駐點(diǎn)”為,那么滿足()A. B. C. D.3.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.4.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.5.直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA.3-1 B.3-12 C.6.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]7.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.8.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.39.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.8410.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知是過拋物線焦點(diǎn)的弦,是原點(diǎn),則()A.-2 B.-4 C.3 D.-312.設(shè),是空間兩條不同的直線,,是空間兩個不同的平面,給出下列四個命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列()中,若,,則的值是______.14.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.15.函數(shù)的單調(diào)增區(qū)間為__________.16.有以下四個命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點(diǎn)的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對稱.其中正確命題的序號為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟(jì)的巨大發(fā)展.據(jù)統(tǒng)計,在2018年這一年內(nèi)從市到市乘坐高鐵或飛機(jī)出行的成年人約為萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學(xué)期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機(jī)?并說明理由.18.(12分)已知函數(shù)的導(dǎo)函數(shù)的兩個零點(diǎn)為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.19.(12分)已知函數(shù).(1)當(dāng)時,判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.20.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.21.(12分)△的內(nèi)角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.22.(10分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的.(1)試判斷誰的計算結(jié)果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

先化簡,再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)椋褹B,所以.故選:D本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2.D【解析】

由題設(shè)中所給的定義,方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,根據(jù)零點(diǎn)存在定理即可求出的大致范圍【詳解】解:由題意方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,對于函數(shù),由于,,設(shè),該函數(shù)在為增函數(shù),,,在上有零點(diǎn),故函數(shù)的“新駐點(diǎn)”為,那么故選:.本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關(guān)鍵,本題考查了推理判斷的能力,屬于基礎(chǔ)題..3.B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.4.B【解析】

由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.5.A【解析】

由直線x-3y+3=0過橢圓的左焦點(diǎn)F,得到左焦點(diǎn)為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦點(diǎn)F,令所以c=3,即橢圓的左焦點(diǎn)為F(-3,0)直線交y軸于C(0,1),所以,OF=因?yàn)镕C=2CA,所以FA=3又由點(diǎn)A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.本題考查了橢圓的幾何性質(zhì)——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得6.D【解析】

由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.7.D【解析】

根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時,該直線在軸上的截距最小,此時取最小值,即.故選:D.本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.8.C【解析】

由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個數(shù),綜合①②③得解.【詳解】①當(dāng)時,,滿足題意,②當(dāng)時,,,,,故不恒成立,③當(dāng)時,設(shè),,令,得,,得,下面考查方程的解的個數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.9.B【解析】

畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計算能力和空間想象能力.10.C【解析】

根據(jù)等比數(shù)列的前項和公式,判斷出正確選項.【詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項和公式,屬于基礎(chǔ)題.11.D【解析】

設(shè),,設(shè):,聯(lián)立方程得到,計算得到答案.【詳解】設(shè),,故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡化運(yùn)算,是解題的關(guān)鍵.12.C【解析】

根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯②:因?yàn)?,,所以或,因?yàn)?,所以,故②對③:或,故③錯④:如圖因?yàn)?,,在?nèi)過點(diǎn)作直線的垂線,則直線,又因?yàn)?,設(shè)經(jīng)過和相交的平面與交于直線,則又,所以因?yàn)椋?,所以,所以,故④?故選:C考查線面平行或垂直的判斷,基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.14.【解析】

基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個數(shù)m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.15.【解析】

先求出導(dǎo)數(shù),再在定義域上考慮導(dǎo)數(shù)的符號為正時對應(yīng)的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【詳解】函數(shù)的定義域?yàn)?,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,注意先考慮函數(shù)的定義域,再考慮導(dǎo)數(shù)在定義域上的符號,本題屬于基礎(chǔ)題.16.①【解析】

由三角形的正弦定理和邊角關(guān)系可判斷①;由零點(diǎn)存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點(diǎn)可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點(diǎn),比如在存在零點(diǎn),但是,故②錯誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對稱,即對稱,故④錯誤.故答案為:①.本題主要考查函數(shù)的零點(diǎn)存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)分布列見解析,數(shù)學(xué)期望(3)建議甲乘坐高鐵從市到市.見解析【解析】

(1)根據(jù)分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計算公式計算得出;(2)依題意可知服從二項分布,先計算出隨機(jī)選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數(shù)學(xué)期望;(3)可以計算滿意度均值來比較乘坐高鐵還是飛機(jī).【詳解】(1)設(shè)事件:“在樣本中任取個,這個出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個,這個出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因?yàn)樵?018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,此人為老年人概率是,所以,,,所以隨機(jī)變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機(jī)的人滿意度均值為:因?yàn)?,所以建議甲乘坐高鐵從市到市.本題主要考查了分層抽樣的應(yīng)用、古典概型的概率計算、以及離散型隨機(jī)變量的分布列和期望的計算,解題關(guān)鍵是對題意的理解,概率類型的判斷,屬于中檔題.18.(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)最大值是.【解析】

(1)求得,由題意可知和是函數(shù)的兩個零點(diǎn),根據(jù)函數(shù)的符號變化可得出的符號變化,進(jìn)而可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結(jié)論知,函數(shù)的極小值為,進(jìn)而得出,解出、、的值,然后利用導(dǎo)數(shù)可求得函數(shù)在區(qū)間上的最大值.【詳解】(1),令,因?yàn)椋缘牧泓c(diǎn)就是的零點(diǎn),且與符號相同.又因?yàn)椋援?dāng)時,,即;當(dāng)或時,,即.所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)由(1)知,是的極小值點(diǎn),所以有,解得,,,所以.因?yàn)楹瘮?shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與最值,考查計算能力,屬于中等題.19.(1)在為增函數(shù);證明見解析(2)【解析】

(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時,.記,則,當(dāng)時,,.所以,所以在單調(diào)遞增,所以.因?yàn)?,所以,所以在為增函?shù).(2)由題意,得,記,則,令,則,當(dāng)時,,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.②當(dāng),,令,,因?yàn)?,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點(diǎn)存在性定理知,存在唯一實(shí)數(shù),,當(dāng)時,,單調(diào)遞減,即單調(diào)遞減,所以,此時在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和零點(diǎn)及不等式恒成立等問題,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想,考查了學(xué)生的邏輯推理和運(yùn)算求解能力,屬于難題.20.(1)證明見解析(2)【解析】

(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論