2024-2025學年陜西省榆林市第十二中學高三復習統(tǒng)一檢測試題數學試題含解析_第1頁
2024-2025學年陜西省榆林市第十二中學高三復習統(tǒng)一檢測試題數學試題含解析_第2頁
2024-2025學年陜西省榆林市第十二中學高三復習統(tǒng)一檢測試題數學試題含解析_第3頁
2024-2025學年陜西省榆林市第十二中學高三復習統(tǒng)一檢測試題數學試題含解析_第4頁
2024-2025學年陜西省榆林市第十二中學高三復習統(tǒng)一檢測試題數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年陜西省榆林市第十二中學高三復習統(tǒng)一檢測試題數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.92.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲200個點,己知恰有80個點落在陰影部分據此可估計陰影部分的面積是()A. B. C.10 D.3.在等差數列中,若,則()A.8 B.12 C.14 D.104.若點是角的終邊上一點,則()A. B. C. D.5.已知向量,,,若,則()A. B. C. D.6.為比較甲、乙兩名高中學生的數學素養(yǎng),對課程標準中規(guī)定的數學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數據分析素養(yǎng)優(yōu)于乙 B.乙的數據分析素養(yǎng)優(yōu)于數學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數學運算最強7.已知函數則函數的圖象的對稱軸方程為()A. B.C. D.8.正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.9.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.10.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.11.在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發(fā)現了棣莫弗定理:,,則,由棣莫弗定理可以導出復數乘方公式:,已知,則()A. B.4 C. D.1612.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知圓及點,設點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.14.設函數在區(qū)間上的值域是,則的取值范圍是__________.15.函數在區(qū)間(-∞,1)上遞增,則實數a的取值范圍是____16.若,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,曲線在點處的切線方程為.(1)求,的值;(2)證明函數存在唯一的極大值點,且.18.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.19.(12分)已知函數,.(1)討論的單調性;(2)若存在兩個極值點,,證明:.20.(12分)已知直線l的極坐標方程為,圓C的參數方程為(為參數).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.21.(12分)已知函數f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數x的取值范圍.22.(10分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據題意,分析可得,由余弦定理求得的值,由可得結果.【詳解】根據題意,,則在中,又,則則則則故選:B此題考查余弦定理和向量的數量積運算,掌握基本概念和公式即可解決,屬于簡單題目.2.D【解析】

直接根據幾何概型公式計算得到答案.【詳解】根據幾何概型:,故.故選:.本題考查了根據幾何概型求面積,意在考查學生的計算能力和應用能力.3.C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.4.A【解析】

根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5.A【解析】

根據向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:本題考查根據向量平行關系求解參數值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.6.D【解析】

根據所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數據分析素養(yǎng)為100分,乙的數據分析素養(yǎng)為80分,故甲的數據分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數據分析素養(yǎng)為80分,數學建模素養(yǎng)為60分,故乙的數據分析素養(yǎng)優(yōu)于數學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數學運算為80分,不是最強的,故D錯誤;故選:D本題考查了樣本數據的特征、平均數的計算,考查了學生的數據處理能力,屬于基礎題.7.C【解析】

,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數的對稱性的問題,在處理余弦型函數的性質時,一般采用整體法,結合三角函數的性質,是一道容易題.8.C【解析】

分別以直線為軸,直線為軸建立平面直角坐標系,設,根據,可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.本題考查向量的數量積的坐標表示,屬于基礎題.9.A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.本題考查求三角形面積,考查正弦定理,同角間的三角函數關系,兩角和的正弦公式與誘導公式,解題時要根據已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.10.C【解析】

根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.11.D【解析】

根據復數乘方公式:,直接求解即可.【詳解】,.故選:D本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.12.B【解析】

由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結合三視圖求出每個面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由角平分線成比例定理推理可得,進而設點表示向量構建方程組表示點P坐標,代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:本題考查與圓有關的距離的最值問題,常常轉化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.14..【解析】

配方求出頂點,作出圖像,求出對應的自變量,結合函數圖像,即可求解.【詳解】,頂點為因為函數的值域是,令,可得或.又因為函數圖象的對稱軸為,且,所以的取值范圍為.故答案為:.本題考查函數值域,考查數形結合思想,屬于基礎題.15.【解析】

根據復合函數單調性同增異減,結合二次函數的性質、對數型函數的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數的性質和復合函數的單調性可得解得.故答案為:本小題主要考查根據對數型復合函數的單調性求參數的取值范圍,屬于基礎題.16.【解析】

因為,所以.因為,所以,又,所以,所以..三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】

(1)求導,可得(1),(1),結合已知切線方程即可求得,的值;(2)利用導數可得,,再構造新函數,利用導數求其最值即可得證.【詳解】(1)函數的定義域為,,則(1),(1),故曲線在點,(1)處的切線方程為,又曲線在點,(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調遞減,又,(1),故存在,使得,且當時,,單調遞增,當,時,,單調遞減,由于,(1),(2),故存在,使得,且當時,,,單調遞增,當,時,,,單調遞減,故函數存在唯一的極大值點,且,即,則,令,則,故在上單調遞增,由于,故(2),即,.本題考查導數的幾何意義以及利用導數研究函數的單調性,極值及最值,考查推理論證能力,屬于中檔題.18.(1)見解析;(2).【解析】

(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結論成立;②兩切線、的斜率都存在,可設切線的方程為,將該直線的方程與橢圓的方程聯(lián)立,由可得出關于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結論;(2)求出點、的坐標,利用兩點間的距離公式結合韋達定理得出,換元,可得出,利用二次函數的基本性質可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當兩切線、的斜率都存在時,設切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據題意得、,,令,則,所以,當時,,當時,.因此,的取值范圍是.本題考查橢圓兩切線垂直的證明,同時也考查了弦長的取值范圍的計算,考查計算能力,屬于中等題.19.(1)見解析;(2)見解析【解析】

(1)求得的導函數,對分成兩種情況,討論的單調性.(2)由(1)判斷出的取值范圍,根據韋達定理求得的關系式,利用差比較法,計算,通過構造函數,利用導數證得,由此證得,進而證得不等式成立.【詳解】(1).當時,,此時在上單調遞減;當時,由解得或,∵是增函數,∴此時在和單調遞減,在單調遞增.(2)由(1)知.,,,不妨設,∴,,令,∴,∴在上是減函數,,∴,即.本小題主要考查利用導數研究函數的單調區(qū)間,考查利用導數證明不等式,考查分類討論的數學思想方法,考查化歸與轉化的數學思想方法,屬于中檔題.20.(1).x2+y2=1.(2)16【解析】

(1)直接利用極坐標方程和參數方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.本題考查了極坐標方程和參數方程,圓的弦長,意在考查學生的計算能力和轉化能力.21.≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當且僅當(a+b)·(a-b)≥0時取等號,∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.22.(1)極小值為,極大值為.(2)【解析】

(1)根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論