2024-2025學年云南省曲靖市沾益區(qū)第四中學第二學期期末學生學業(yè)質量監(jiān)測高三數學試題含解析_第1頁
2024-2025學年云南省曲靖市沾益區(qū)第四中學第二學期期末學生學業(yè)質量監(jiān)測高三數學試題含解析_第2頁
2024-2025學年云南省曲靖市沾益區(qū)第四中學第二學期期末學生學業(yè)質量監(jiān)測高三數學試題含解析_第3頁
2024-2025學年云南省曲靖市沾益區(qū)第四中學第二學期期末學生學業(yè)質量監(jiān)測高三數學試題含解析_第4頁
2024-2025學年云南省曲靖市沾益區(qū)第四中學第二學期期末學生學業(yè)質量監(jiān)測高三數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年云南省曲靖市沾益區(qū)第四中學第二學期期末學生學業(yè)質量監(jiān)測高三數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數z=,則|z|=()A. B. C. D.2.已知傾斜角為的直線與直線垂直,則()A. B. C. D.3.已知函數的最大值為,若存在實數,使得對任意實數總有成立,則的最小值為()A. B. C. D.4.如圖,在棱長為4的正方體中,E,F,G分別為棱AB,BC,的中點,M為棱AD的中點,設P,Q為底面ABCD內的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.5.設集合,集合,則=()A. B. C. D.R6.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.67.已知等比數列的前項和為,且滿足,則的值是()A. B. C. D.8.已知雙曲線的一條漸近線經過圓的圓心,則雙曲線的離心率為()A. B. C. D.29.已知函數的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④10.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側棱,,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.11.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙12.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.14.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.15.在中,點在邊上,且,設,,則________(用,表示)16.已知復數,其中為虛數單位,則的模為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線C1的參數方程為(φ為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.18.(12分)已知函數,,設.(1)當時,求函數的單調區(qū)間;(2)設方程(其中為常數)的兩根分別為,,證明:.(注:是的導函數)19.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.20.(12分)以直角坐標系的原點為極點,軸的非負半軸為極軸,且兩坐標系取相同的長度單位.已知曲線的參數方程:(為參數),直線的極坐標方程:(1)求曲線的極坐標方程;(2)若直線與曲線交于、兩點,求的最大值.21.(12分)已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.22.(10分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

先用復數的除法運算將復數化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.本題考查復數的基本概念和基本運算,屬于基礎題.2.D【解析】

傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.本題考查了相互垂直的直線斜率之間的關系,同角三角函數基本關系式,考查計算能力,屬于基礎題.3.B【解析】

根據三角函數的兩角和差公式得到,進而可以得到函數的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數則函數的最大值為2,存在實數,使得對任意實數總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.這個題目考查了三角函數的兩角和差的正余弦公式的應用,以及三角函數的圖像的性質的應用,題目比較綜合.4.C【解析】

把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內的部分)上,顯然關于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質求得最小值.5.D【解析】試題分析:由題,,,選D考點:集合的運算6.C【解析】

根據題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當且僅當時取“=”號.

答案:C本題考查基本不等式的應用,“1”的應用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是首先要判斷參數是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最小);三相等是最后一定要驗證等號能否成立,屬于基礎題.7.C【解析】

利用先求出,然后計算出結果.【詳解】根據題意,當時,,,故當時,,數列是等比數列,則,故,解得,故選.本題主要考查了等比數列前項和的表達形式,只要求出數列中的項即可得到結果,較為基礎.8.B【解析】

求出圓心,代入漸近線方程,找到的關系,即可求解.【詳解】解:,一條漸近線,故選:B利用的關系求雙曲線的離心率,是基礎題.9.D【解析】

計算得到,,故函數是周期函數,軸對稱圖形,故②④正確,根據圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數關于對稱,故④正確;根據圖像知:①③不正確;故選:.本題考查了根據函數圖像判斷函數性質,意在考查學生對于三角函數知識和圖像的綜合應用.10.D【解析】

如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.11.A【解析】

利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.12.D【解析】

解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.本題考查集合的交集運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

建系,設設,由可得,進一步得到的坐標,再利用數量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設,則,所以,,由,得,即,又,所以,故,,所以.故答案為:2本題考查利用坐標法求向量的數量積,考查學生的運算求解能力,是一道中檔題.14.240【解析】

(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40本題主要考查了分段函數的應用,屬于中檔題.15.【解析】

結合圖形及向量的線性運算將轉化為用向量表示,即可得到結果.【詳解】在中,因為,所以,又因為,所以.故答案為:本題主要考查三角形中向量的線性運算,關鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉化.16.【解析】

利用復數模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.本題考查復數模的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】

(Ⅰ)消去參數φ可得C1的直角坐標方程,易得曲線C2的圓心的直角坐標為(0,2),可得C2的直角坐標方程;(Ⅱ)設M(3cosφ,sinφ),由三角函數和二次函數可得|MC2|的取值范圍,結合圓的知識可得答案.【詳解】(1)消去參數φ可得C1的普通方程為y2=1,∵曲線C2是圓心為(2,),半徑為1的圓,曲線C2的圓心的直角坐標為(0,2),∴C2的直角坐標方程為x2+(y﹣2)2=1;(2)設M(3cosφ,sinφ),則|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由題意結合圖象可得|MN|的最小值為1﹣1=0,最大值為1,∴|MN|的取值范圍為[0,1].本題考查橢圓的參數方程,涉及圓的知識和極坐標方程,屬中檔題.18.(1)在上單調遞增,在上單調遞減.(2)見解析【解析】

(1)求出導函數,由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數的,再求出,由的兩根是,得,計算,代入后可得結論.【詳解】解:,函數的定義域為,.(1)當時,,由得,由得,故函數在上單調遞增,在上單調遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..本題考查用導數研究函數的單調性,考查導數的運算、方程根的知識.在可導函數中一般由確定增區(qū)間,由確定減區(qū)間.19.(1)見解析(2)【解析】

(1)根據等邊三角形的性質證得,根據面面垂直的性質定理,證得底面,由此證得,結合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.本小題主要考查面面垂直的判定定理和性質定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20.(1);(2)10【解析】

(1)消去參數,可得曲線C的普通方程,再根據極坐標與直角坐標的互化公式,代入即可求得曲線C的極坐標方程;(2)將代入曲線C的極坐標方程,利用根與系數的關系,求得,進而得到=,結合三角函數的性質,即可求解.【詳解】(1)由題意,曲線C的參數方程為,消去參數,可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標方程為.(2)將代入,得,即,所以=,其中,當時,取最大值,最大值為10.本題主要考查了參數方程與普通方程,極坐標方程與直角坐標方程的互化,以及曲線的極坐標方程的應用,著重考查了運算與求解能力,屬于中檔試題.21.(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】

(1)根據三角形內切圓的性質證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點C的軌跡為以點A和點B為焦點的橢圓(點不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論