版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年重慶市南開(kāi)中學(xué)高考第五次適應(yīng)性考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,集合,則=()A. B.C. D.2.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時(shí),的值為()A. B. C. D.3.如圖,在中,,是上的一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.4.已知是雙曲線的兩個(gè)焦點(diǎn),過(guò)點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.5.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.126.設(shè)不等式組,表示的平面區(qū)域?yàn)椋趨^(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿足不等式的概率為A. B.C. D.7.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對(duì)稱(chēng)軸是,則的最小值為A. B. C. D.8.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.9.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如圖,在直三棱柱中,,,點(diǎn)分別是線段的中點(diǎn),,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.11.已知正四面體的棱長(zhǎng)為,是該正四面體外接球球心,且,,則()A. B.C. D.12.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q二、填空題:本題共4小題,每小題5分,共20分。13.已知半徑為的圓周上有一定點(diǎn),在圓周上等可能地任意取一點(diǎn)與點(diǎn)連接,則所得弦長(zhǎng)介于與之間的概率為_(kāi)_________.14.若變量,滿足約束條件則的最大值為_(kāi)_______.15.如圖,某市一學(xué)校位于該市火車(chē)站北偏東方向,且,已知是經(jīng)過(guò)火車(chē)站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點(diǎn).當(dāng)?shù)卣顿Y開(kāi)發(fā)區(qū)域發(fā)展經(jīng)濟(jì),其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時(shí),面積為最小,政府投資最低?16.若函數(shù)為自然對(duì)數(shù)的底數(shù))在和兩處取得極值,且,則實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點(diǎn),且.求直線的方程.18.(12分)誠(chéng)信是立身之本,道德之基,我校學(xué)生會(huì)創(chuàng)設(shè)了“誠(chéng)信水站”,既便于學(xué)生用水,又推進(jìn)誠(chéng)信教育,并用“”表示每周“水站誠(chéng)信度”,為了便于數(shù)據(jù)分析,以四周為一周期,如表為該水站連續(xù)十二周(共三個(gè)周期)的誠(chéng)信數(shù)據(jù)統(tǒng)計(jì):第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)計(jì)算表中十二周“水站誠(chéng)信度”的平均數(shù);(Ⅱ)若定義水站誠(chéng)信度高于的為“高誠(chéng)信度”,以下為“一般信度”則從每個(gè)周期的前兩周中隨機(jī)抽取兩周進(jìn)行調(diào)研,計(jì)算恰有兩周是“高誠(chéng)信度”的概率;(Ⅲ)已知學(xué)生會(huì)分別在第一個(gè)周期的第四周末和第二個(gè)周期的第四周末各舉行了一次“以誠(chéng)信為本”的主題教育活動(dòng),根據(jù)已有數(shù)據(jù),說(shuō)明兩次主題教育活動(dòng)的宣傳效果,并根據(jù)已有數(shù)據(jù)陳述理由.19.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動(dòng)了我國(guó)經(jīng)濟(jì)的巨大發(fā)展.據(jù)統(tǒng)計(jì),在2018年這一年內(nèi)從市到市乘坐高鐵或飛機(jī)出行的成年人約為萬(wàn)人次.為了解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個(gè),求這個(gè)出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學(xué)期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機(jī)?并說(shuō)明理由.20.(12分)已知函數(shù),.(1)若不等式對(duì)恒成立,求的最小值;(2)證明:.(3)設(shè)方程的實(shí)根為.令若存在,,,使得,證明:.21.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.22.(10分)數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),為的前n項(xiàng)和,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.2.B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí).故選:B本題主要考查了數(shù)列中的最值問(wèn)題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.3.B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點(diǎn)共線可得.【詳解】解:依題:,又三點(diǎn)共線,,解得.故選:.本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過(guò)向量的運(yùn)算來(lái)解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點(diǎn)共線?(為平面內(nèi)任一點(diǎn),)4.B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長(zhǎng)乘以?xún)?nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長(zhǎng)為,設(shè)的內(nèi)切圓的半徑為,則,故選:B本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.5.D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.6.A【解析】
畫(huà)出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫(huà)出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).本題考查由約束條件畫(huà)可行域,求幾何概型,屬于簡(jiǎn)單題.7.C【解析】
將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,因?yàn)楹瘮?shù)的圖象的一條對(duì)稱(chēng)軸是,所以,即,所以,又,所以的最小值為.故選C.8.D【解析】
根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因?yàn)楫?dāng)時(shí),,即,所以,在上是增函數(shù),在中,因?yàn)?,所以,,因?yàn)椋?,所以,即,所以,即故選:D本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運(yùn)算求解的能力,屬于中檔題.9.B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.10.D【解析】
過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法求解二面角的余弦值得答案.【詳解】解:因?yàn)椋?,所以,即過(guò)點(diǎn)作,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,,,,0,,,1,,,,,,,設(shè)平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.11.A【解析】
如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦?,因此,則,因此,因此,則,故選A.本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.12.C【解析】
解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C二、填空題:本題共4小題,每小題5分,共20分。13.【解析】在圓上其他位置任取一點(diǎn)B,設(shè)圓半徑為R,其中滿足條件AB弦長(zhǎng)介于與之間的弧長(zhǎng)為?2πR,則AB弦的長(zhǎng)度大于等于半徑長(zhǎng)度的概率P==;故答案為:.14.7【解析】
畫(huà)出不等式組表示的平面區(qū)域,數(shù)形結(jié)合,即可容易求得目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的平面區(qū)域,如下圖陰影部分所示.觀察可知,當(dāng)直線過(guò)點(diǎn)時(shí),有最大值,.故答案為:.本題考查二次不等式組與平面區(qū)域、線性規(guī)劃,主要考查推理論證能力以及數(shù)形結(jié)合思想,屬基礎(chǔ)題.15.(1);(2).【解析】
(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進(jìn)而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡(jiǎn)整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進(jìn)而對(duì)原面積的函數(shù)用含t的表達(dá)式換元,再令進(jìn)行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因?yàn)橹本€與圓相切,所以.因?yàn)辄c(diǎn)在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時(shí),取得最大值,取最小值.答:當(dāng)時(shí),面積為最小,政府投資最低.本題考查三角函數(shù)的實(shí)際應(yīng)用,應(yīng)優(yōu)先結(jié)合實(shí)際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.16.【解析】
先將函數(shù)在和兩處取得極值,轉(zhuǎn)化為方程有兩不等實(shí)根,且,再令,將問(wèn)題轉(zhuǎn)化為直線與曲線有兩交點(diǎn),且橫坐標(biāo)滿足,用導(dǎo)數(shù)方法研究單調(diào)性,作出簡(jiǎn)圖,求出時(shí),的值,進(jìn)而可得出結(jié)果.【詳解】因?yàn)椋?,又函?shù)在和兩處取得極值,所以是方程的兩不等實(shí)根,且,即有兩不等實(shí)根,且,令,則直線與曲線有兩交點(diǎn),且交點(diǎn)橫坐標(biāo)滿足,又,由得,所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞增;當(dāng),時(shí),,即函數(shù)在和上單調(diào)遞減;當(dāng)時(shí),由得,此時(shí),因此,由得.故答案為本題主要考查導(dǎo)數(shù)的應(yīng)用,已知函數(shù)極值點(diǎn)間的關(guān)系求參數(shù)的問(wèn)題,通常需要將函數(shù)極值點(diǎn),轉(zhuǎn)化為導(dǎo)函數(shù)對(duì)應(yīng)方程的根,再轉(zhuǎn)化為直線與曲線交點(diǎn)的問(wèn)題來(lái)處理,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程.(2)利用直線被圓截得的弦長(zhǎng)公式計(jì)算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.本題考查參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程之間的互化,考查直線被圓截得的弦長(zhǎng)公式的應(yīng)用,考查分析能力與計(jì)算能力,屬于基礎(chǔ)題.18.(Ⅰ);(Ⅱ);(Ⅲ)兩次活動(dòng)效果均好,理由詳見(jiàn)解析.【解析】
(Ⅰ)結(jié)合表中的數(shù)據(jù),代入平均數(shù)公式求解即可;(Ⅱ)設(shè)抽到“高誠(chéng)信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周,則有兩周為“高誠(chéng)信度”事件為,利用列舉法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率計(jì)算公式求解即可;(Ⅲ)結(jié)合表中的數(shù)據(jù)判斷即可.【詳解】(Ⅰ)表中十二周“水站誠(chéng)信度”的平均數(shù).(Ⅱ)設(shè)抽到“高誠(chéng)信度”的事件為,則抽到“一般信度”的事件為,則隨機(jī)抽取兩周均為“高誠(chéng)信度”事件為,總的基本事件為共15種,事件所包含的基本事件為共10種,由古典概型概率計(jì)算公式可得,.(Ⅲ)兩次活動(dòng)效果均好.理由:活動(dòng)舉辦后,“水站誠(chéng)信度'由和看出,后繼一周都有提升.本題考查平均數(shù)公式和古典概型概率計(jì)算公式;考查運(yùn)算求解能力;利用列舉法正確列舉出所有的基本事件是求古典概型概率的關(guān)鍵;屬于中檔題、常考題型.19.(1)(2)分布列見(jiàn)解析,數(shù)學(xué)期望(3)建議甲乘坐高鐵從市到市.見(jiàn)解析【解析】
(1)根據(jù)分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計(jì)算公式計(jì)算得出;(2)依題意可知服從二項(xiàng)分布,先計(jì)算出隨機(jī)選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數(shù)學(xué)期望;(3)可以計(jì)算滿意度均值來(lái)比較乘坐高鐵還是飛機(jī).【詳解】(1)設(shè)事件:“在樣本中任取個(gè),這個(gè)出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個(gè),這個(gè)出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因?yàn)樵?018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,此人為老年人概率是,所以,,,所以隨機(jī)變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來(lái)分析問(wèn)題,參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機(jī)的人滿意度均值為:因?yàn)?,所以建議甲乘坐高鐵從市到市.本題主要考查了分層抽樣的應(yīng)用、古典概型的概率計(jì)算、以及離散型隨機(jī)變量的分布列和期望的計(jì)算,解題關(guān)鍵是對(duì)題意的理解,概率類(lèi)型的判斷,屬于中檔題.20.(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【解析】
(1)由題意可得,,令,利用導(dǎo)數(shù)得在上單調(diào)遞減,進(jìn)而可得結(jié)論;(2)不等式轉(zhuǎn)化為,令,,利用導(dǎo)數(shù)得單調(diào)性即可得到答案;(3)由題意可得,進(jìn)而可將不等式轉(zhuǎn)化為,再利用單調(diào)性可得,記,,再利用導(dǎo)數(shù)研究單調(diào)性可得在上單調(diào)遞增,即,即,即可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【2021屆備考】2021屆全國(guó)名校生物試題分類(lèi)解析匯編第六期(11月)-D單元-細(xì)胞的生命歷程
- 【名師一號(hào)】2020-2021學(xué)年高中生物(人教版)必修三雙基限時(shí)練15-生態(tài)系統(tǒng)的能量流動(dòng)
- 2021高一物理-1.2-運(yùn)動(dòng)的合成與分解-每課一練1(教科版必修2)
- 【語(yǔ)法突破-師說(shuō)】2021高考(人教版)英語(yǔ)全程復(fù)習(xí)構(gòu)想-課時(shí)訓(xùn)練53-專(zhuān)題十三-數(shù)詞與主謂一致
- 河北省保定市四縣一中2024-2025學(xué)年高二上學(xué)期12月聯(lián)考化學(xué)試題 (含答案)
- 2021年高考英語(yǔ)考點(diǎn)總動(dòng)員系列-專(zhuān)題05-動(dòng)詞和動(dòng)詞短語(yǔ)(解析版)
- 【全程復(fù)習(xí)方略】2020年北師版數(shù)學(xué)文(陜西用)課時(shí)作業(yè):第十章-第一節(jié)隨機(jī)事件的概率
- 【中學(xué)教材全解】2020-2021學(xué)年人教版高中物理必修2-第7章-第2節(jié)-功備課資料素材庫(kù)
- 【名師一號(hào)】2021高考化學(xué)(蘇教版)一輪復(fù)習(xí)考點(diǎn)突破:5-3微粒之間的相互作用力和物質(zhì)的多樣性
- 大學(xué)生畢業(yè)實(shí)習(xí)報(bào)告(15篇)
- 江西省穩(wěn)派教育2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 2021-2022學(xué)年統(tǒng)編本五四制道德與法治五年級(jí)上冊(cè)期末檢測(cè)題及答案(共6套)
- (BRB)屈曲約束支撐施工專(zhuān)項(xiàng)方案
- 期末達(dá)標(biāo)測(cè)試卷(試題)-2024-2025學(xué)年人教PEP版英語(yǔ)四年級(jí)上冊(cè)
- 高職機(jī)電專(zhuān)業(yè)《液壓與氣動(dòng)技術(shù)》說(shuō)課稿
- 青島版四年級(jí)上冊(cè)簡(jiǎn)便計(jì)算400道及答案
- 員工積分制管理實(shí)施方案細(xì)則
- GB/T 19752-2024混合動(dòng)力電動(dòng)汽車(chē)動(dòng)力性能試驗(yàn)方法
- 和員工簽股權(quán)合同范本
- 大灣區(qū)2023一2024學(xué)年第一學(xué)期末普通高中一年級(jí)聯(lián)合考試地理附有答案
- 07FD02 防空地下室電氣設(shè)備安裝
評(píng)論
0/150
提交評(píng)論