2022年山西省渾源縣高三第三次測評數(shù)學試卷含解析_第1頁
2022年山西省渾源縣高三第三次測評數(shù)學試卷含解析_第2頁
2022年山西省渾源縣高三第三次測評數(shù)學試卷含解析_第3頁
2022年山西省渾源縣高三第三次測評數(shù)學試卷含解析_第4頁
2022年山西省渾源縣高三第三次測評數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.42.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件4.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.5.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]6.已知復數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.7.已知函數(shù)滿足當時,,且當時,;當時,且).若函數(shù)的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.8.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.9.下列判斷錯誤的是()A.若隨機變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件10.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.11.已知集合,,則()A. B.C. D.12.函數(shù)的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.15.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.16.已知的展開式中第項與第項的二項式系數(shù)相等,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.18.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.19.(12分)已知函數(shù).⑴當時,求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.20.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應選擇哪種還款方式.參考數(shù)據(jù):.21.(12分)設函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.22.(10分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據(jù)拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯(lián)立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.2.C【解析】

根據(jù)等比數(shù)列的性質以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關鍵.3.A【解析】

根據(jù)向量共線的性質依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.4.B【解析】

根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.5.B【解析】

先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.6.A【解析】

把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.7.C【解析】

先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數(shù)關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數(shù)圖象解決函數(shù)的交點個數(shù)問題,考查學生數(shù)形結合的思想、轉化與化歸的思想,是一道中檔題.8.C【解析】

對函數(shù)求導,對a分類討論,分別求得函數(shù)的單調性及極值,結合端點處的函數(shù)值進行判斷求解.【詳解】∵,.當時,,在上單調遞增,不合題意.當時,,在上單調遞減,也不合題意.當時,則時,,在上單調遞減,時,,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調性及極值問題,屬于中檔題.9.D【解析】

根據(jù)正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態(tài)分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,考查理解辨析能力與運算求解能力,屬于基礎題.10.B【解析】

設雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.11.C【解析】

求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.12.A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎題.14.【解析】

根據(jù)個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.15.【解析】

取的中點為M,由可得,可得M在上,當最小時,弦的長才最大.【詳解】設為的中點,,即,即,,.設,則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關系的綜合應用,考查學生的邏輯推理、數(shù)形結合的思想,是一道有一定難度的題.16.【解析】

根據(jù)的展開式中第項與第項的二項式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因為的展開式中第項與第項的二項式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點睛】本題主要考查二項式的系數(shù),還考查了運算求解的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】

(1)根據(jù)面積公式和數(shù)量積性質求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數(shù)量積的性質及其運算,余弦定理解三角形及三角形面積公式的應用,屬于中檔題.18.(1);(2)見解析.【解析】

(1)根據(jù)題意得出關于、、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、、,設直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達定理,由向量的坐標運算可求得點的坐標表達式,并代入韋達定理,消去,可得出點的橫坐標,進而可得出結論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.19.(1)當時,函數(shù)取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導分析,得函數(shù)取得極小值為,無極大值;(2),所以,通過求導討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域為當時,,所以所以當時,,當時,,所以函數(shù)在區(qū)間單調遞減,在區(qū)間單調遞增,所以當時,函數(shù)取得極小值為,無極大值;(2)設函數(shù)上點與函數(shù)上點處切線相同,則所以所以,代入得:設,則不妨設則當時,,當時,所以在區(qū)間上單調遞減,在區(qū)間上單調遞增,代入可得:設,則對恒成立,所以在區(qū)間上單調遞增,又所以當時,即當時,又當時因此當時,函數(shù)必有零點;即當時,必存在使得成立;即存在使得函數(shù)上點與函數(shù)上點處切線相同.又由得:所以單調遞減,因此所以實數(shù)的取值范圍是.20.(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數(shù)列,記為,表示數(shù)列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經(jīng)濟利益的角度來考慮,小張應選擇等額本金還款方式.【點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論