版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列說(shuō)法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題2.如圖,在中,點(diǎn)是的中點(diǎn),過(guò)點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.33.已知變量,滿足不等式組,則的最小值為()A. B. C. D.4.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)5.函數(shù)(其中是自然對(duì)數(shù)的底數(shù))的大致圖像為()A. B. C. D.6.集合的真子集的個(gè)數(shù)為()A.7 B.8 C.31 D.327.已知函數(shù)是奇函數(shù),且,若對(duì),恒成立,則的取值范圍是()A. B. C. D.8.已知函數(shù),若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.9.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.1010.為了貫徹落實(shí)黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過(guò)統(tǒng)計(jì)繪制如圖,其中各項(xiàng)統(tǒng)計(jì)不重復(fù).若該市老年低收入家庭共有900戶,則下列說(shuō)法錯(cuò)誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無(wú)業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學(xué)生中,低收入家庭有800戶11.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-112.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對(duì)稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.14.已知函數(shù),對(duì)于任意都有,則的值為_(kāi)_____________.15.已知,,,,則______.16.在正方體中,已知點(diǎn)在直線上運(yùn)動(dòng),則下列四個(gè)命題中:①三棱錐的體積不變;②;③當(dāng)為中點(diǎn)時(shí),二面角的余弦值為;④若正方體的棱長(zhǎng)為2,則的最小值為;其中說(shuō)法正確的是____________(寫(xiě)出所有說(shuō)法正確的編號(hào))三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn),的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過(guò),兩點(diǎn),求橢圓的方程.18.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.19.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.20.(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,.(1)求點(diǎn)的軌跡的方程;(2)過(guò)點(diǎn)且斜率存在的直線與曲線交于、兩點(diǎn),,求的取值范圍.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線.在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說(shuō)明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點(diǎn)是曲線上的任意一點(diǎn),又直線上有兩點(diǎn)和,且,又點(diǎn)的極角為,點(diǎn)的極角為銳角.求:①點(diǎn)的極角;②面積的取值范圍.22.(10分)已知在ΔABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.2.C【解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問(wèn)題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.3.B【解析】
先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫(huà)出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.4.D【解析】
根據(jù)所給的雷達(dá)圖逐個(gè)選項(xiàng)分析即可.【詳解】對(duì)于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對(duì)于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對(duì)于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對(duì)于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯(cuò)誤;故選:D【點(diǎn)睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計(jì)算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.5.D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對(duì)稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,故選D.6.A【解析】
計(jì)算,再計(jì)算真子集個(gè)數(shù)得到答案.【詳解】,故真子集個(gè)數(shù)為:.故選:.【點(diǎn)睛】本題考查了集合的真子集個(gè)數(shù),意在考查學(xué)生的計(jì)算能力.7.A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)?,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對(duì)恒成立,則,對(duì)恒成立,,得,所以的取值范圍是.故選:A.【點(diǎn)睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.8.B【解析】
根據(jù)所給函數(shù)解析式,畫(huà)出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個(gè)零點(diǎn);對(duì)于當(dāng)時(shí),由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對(duì)于當(dāng)時(shí),結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫(huà)出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個(gè)零點(diǎn),當(dāng)時(shí),,若,則,即,所以,解得;當(dāng)時(shí),,則,且若在時(shí)有一個(gè)零點(diǎn),則,綜上可得,故選:B.【點(diǎn)睛】本題考查了函數(shù)圖像的畫(huà)法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.9.C【解析】
將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則由,,得解得,,所以.故選C.【點(diǎn)睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項(xiàng)的值,可通過(guò)構(gòu)建和的方程組求通項(xiàng)公式.10.D【解析】
根據(jù)給出的統(tǒng)計(jì)圖表,對(duì)選項(xiàng)進(jìn)行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無(wú)業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學(xué)生中,低收入家庭有15000×4%=600(戶),D錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查對(duì)統(tǒng)計(jì)圖表的認(rèn)識(shí)和分析,這類題要認(rèn)真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.11.D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.12.B【解析】
根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對(duì)稱軸,得出,求出的最小值與對(duì)應(yīng)的,寫(xiě)出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)椋裕ǎ?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對(duì)稱軸和對(duì)稱點(diǎn),在對(duì)稱軸處取得最值,對(duì)稱點(diǎn)處函數(shù)值為零,屬于較易題目.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
按照個(gè)位上的9元的支付情況分類,三個(gè)數(shù)位上的錢(qián)數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類做到不重不漏,分步做到步驟完整.14.【解析】
由條件得到函數(shù)的對(duì)稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對(duì)稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對(duì)稱性,注意對(duì)稱軸必過(guò)最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.15.【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.16.①②④【解析】
①∵,∴平面
,得出上任意一點(diǎn)到平面的距離相等,所以判斷命題①;②由已知得出點(diǎn)P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,運(yùn)用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過(guò)作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),根據(jù)對(duì)稱性和兩點(diǎn)之間線段最短,可求得當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點(diǎn)到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運(yùn)動(dòng)時(shí),點(diǎn)P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,設(shè)正方體的棱長(zhǎng)為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過(guò)作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),則,所以,當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.因?yàn)檎襟w的棱長(zhǎng)為2,所以設(shè)點(diǎn)的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點(diǎn)睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運(yùn)用對(duì)稱的思想,兩點(diǎn)之間線段最短進(jìn)行求解,屬于難度題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點(diǎn)到直線的距離公式可得,又有,聯(lián)立可求離心率;(2)由(1)設(shè)橢圓方程,再設(shè)直線方程,與橢圓方程聯(lián)立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過(guò)點(diǎn)的直線方程為,則原點(diǎn)到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點(diǎn),且.易知,不與軸垂直.設(shè)其直線方程為,代入(1)得.設(shè),則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.18.(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡(jiǎn)三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.19.(1)(2)的遞減區(qū)間為和【解析】
(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.20.(1)(2)【解析】
(1)設(shè)坐標(biāo)后根據(jù)向量的坐標(biāo)運(yùn)算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標(biāo)表示出,得到,所以,代入韋達(dá)定理即可求解.【詳解】(1)設(shè),,則,設(shè),由得.又由于,化簡(jiǎn)得的軌跡的方程為.(2)設(shè)直線的方程為,與的方程聯(lián)立,消去得,,設(shè),,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.【點(diǎn)睛】此題考查軌跡問(wèn)題,橢圓和直線相交,注意坐標(biāo)表示向量進(jìn)行轉(zhuǎn)化的處理技巧,屬于較難題目.21.(1)曲線為圓心在原點(diǎn),半徑為2的圓.的極坐標(biāo)方程為(2)①②【解析】
(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對(duì)應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點(diǎn)的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進(jìn)而求得,從而求得點(diǎn)的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點(diǎn)到直線的距離的表達(dá)式,結(jié)合三角函數(shù)的知識(shí)求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點(diǎn)到直線的距離的最大值和最小值,進(jìn)而求得面積的取值范圍.【詳解】(1)因?yàn)榍€的參數(shù)方程為(為參數(shù)),因?yàn)閯t曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點(diǎn),半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)①點(diǎn)的極角為,代入直線的極坐標(biāo)方程得點(diǎn)極徑為,且,所以為等腰三角形,又直線的普通方程為,又點(diǎn)的極角為銳角,所以,所以,所以點(diǎn)的極角為.②解法1:直線的普通方程為.曲線上的點(diǎn)到直線的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度行政合同監(jiān)管體系構(gòu)建與實(shí)施策略3篇
- 《敘事判斷視閾下《像我這樣的機(jī)器》中的道德書(shū)寫(xiě)探究》
- 2024年債務(wù)免除與跨境電商產(chǎn)業(yè)合作合同3篇
- 網(wǎng)絡(luò)音樂(lè)版權(quán)糾紛案例分析-洞察分析
- 2024全新美陳展覽館設(shè)計(jì)與建設(shè)合同3篇
- 2024年標(biāo)準(zhǔn)版通信電纜租借協(xié)議樣本版
- 2024年02月江蘇2024年寧波銀行蘇州分行社會(huì)招考筆試歷年參考題庫(kù)附帶答案詳解
- 2024年度汪君與李女士離婚財(cái)產(chǎn)分割協(xié)議書(shū)3篇
- 網(wǎng)絡(luò)安全風(fēng)險(xiǎn)評(píng)估與管理案例分析-洞察分析
- 2024年債務(wù)轉(zhuǎn)讓與資產(chǎn)評(píng)估服務(wù)合同3篇
- GB/T 25356-2024機(jī)場(chǎng)道面除冰防冰液
- 研究生考試考研法律碩士專業(yè)基礎(chǔ)(法學(xué))2025年試題及解答
- 部編版道德與法治九年級(jí)上冊(cè)每課教學(xué)反思
- 2024年全國(guó)高中數(shù)學(xué)聯(lián)賽北京賽區(qū)預(yù)賽一試試題(解析版)
- 2024重慶藝術(shù)統(tǒng)考美術(shù)專業(yè)一分一段表
- 綠化養(yǎng)護(hù)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 跨境電商公共服務(wù)平臺(tái)項(xiàng)目招標(biāo)文件
- 河北省保定市2023-2024學(xué)年三年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷
- 煤炭托盤(pán)合作協(xié)議書(shū)
- 2024年中國(guó)主軸產(chǎn)業(yè)深度分析、投資前景及發(fā)展趨勢(shì)預(yù)測(cè)(簡(jiǎn)版報(bào)告)
- 房地產(chǎn)公司總經(jīng)理職位面試問(wèn)題
評(píng)論
0/150
提交評(píng)論