版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.2.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}3.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.4.若,滿足約束條件,則的取值范圍為()A. B. C. D.5.如圖所示,在平面直角坐標系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.6.一小商販準備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件7.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.58.已知整數(shù)滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.9.在中,分別為所對的邊,若函數(shù)有極值點,則的范圍是()A. B.C. D.10.已知符號函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]11.對某兩名高三學生在連續(xù)9次數(shù)學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數(shù)學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內(nèi);③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.112.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術》中記載了“今有共買豕,人出一百,盈一百;人出九十,適足。問人數(shù)、豕價各幾何?”.其意思是“若干個人合買一頭豬,若每人出100,則會剩下100;若每人出90,則不多也不少。問人數(shù)、豬價各多少?”.設分別為人數(shù)、豬價,則___,___.14.《九章算術》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_____人;所合買的物品價格為_______元.15.已知實數(shù)滿足則點構(gòu)成的區(qū)域的面積為____,的最大值為_________16.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.18.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.19.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.20.(12分)已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.(1)求橢圓的方程;(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.21.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.22.(10分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應用,涉及由向量垂直求參數(shù)值,屬基礎題.2.A【解析】
解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.3.C【解析】
根據(jù)平面向量基本定理,用來表示,然后利用數(shù)量積公式,簡單計算,可得結(jié)果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細心觀察,屬基礎題.4.B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎題.5.A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標,然后利用向量垂直的坐標表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【點睛】本題考查了直線與橢圓的交點,考查了向量垂直的坐標表示,考查了橢圓的離心率公式,屬于基礎題.6.D【解析】
由題意列出約束條件和目標函數(shù),數(shù)形結(jié)合即可解決.【詳解】設購買甲、乙兩種商品的件數(shù)應分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經(jīng)過時,最大.故選:D.【點睛】本題考查線性目標函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負數(shù),并準確的畫出可行域,本題是一道基礎題.7.C【解析】
由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關鍵,注意拋物線的性質(zhì)的靈活運用,屬于中檔題.8.D【解析】
列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.9.D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數(shù)的極值.【方法點晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個不等實根,從而可得.10.A【解析】
根據(jù)符號函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.11.C【解析】
利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據(jù)甲同學成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內(nèi),②正確;③乙同學的數(shù)學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉(zhuǎn)化思想以及計算能力,屬于基礎題.12.A【解析】
利用數(shù)列的遞推關系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關系式的應用,數(shù)列累加法以及通項公式的求法,考查計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.10900【解析】
由題意列出方程組,求解即可.【詳解】由題意可得,解得.故答案為10900【點睛】本題主要考查二元一次方程組的解法,用消元法來求解即可,屬于基礎題型.14.753【解析】
根據(jù)物品價格不變,可設共有x人,列出方程求解即可【詳解】設共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學文化及一元一次方程的應用,屬于中檔題.15.811【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合求得區(qū)域面積以及目標函數(shù)的最值.【詳解】不等式組表示的平面區(qū)域如下圖所示:數(shù)形結(jié)合可知,可行域為三角形,且底邊長,高為,故區(qū)域面積;令,變?yōu)?,顯然直線過時,z最大,故.故答案為:;11.【點睛】本題考查簡單線性規(guī)劃問題,涉及區(qū)域面積的求解,屬基礎題.16.【解析】
根據(jù)等差中項性質(zhì),結(jié)合等比數(shù)列通項公式即可求得公比;代入表達式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運算性質(zhì)可得,故答案為:.【點睛】本題考查了等差數(shù)列通項公式的簡單應用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運算,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2).【解析】
(1)先根據(jù)空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據(jù)圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.18.(1)詳見解析;(2).【解析】
(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設點到平面的距離為,由,得,即,解得,點到平面的距離為.【點睛】本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關鍵;屬于中檔題.19.(1);(2).【解析】
(1)利用余弦定理得出關于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數(shù)的基本關系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數(shù)的基本關系以及二倍角公式求值,考查計算能力,屬于中等題.20.(1)(2)【解析】
(1)依題意可得,解方程組即可求出橢圓的方程;(2)設,則,設直線的方程為,聯(lián)立直線與橢圓方程,消去,設,,列出韋達定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點到直線的距離得到,由即可得解;【詳解】解:(1)∵,∴解得,∴橢圓的方程為.(2)∵,∴可設,∴.∵,∴,∴設直線的方程為,∴,∴,顯然恒成立.設,,則,,∴.∴,∴,∴解得,解得,∴,,∴.∵此時直線的方程為,,∴點到直線的距離為,∴,即此時四邊形的面積為.【點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的綜合應用,考查計算能力,屬于中檔題.21.(1)證明見解析(2)【解析】
(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進而求證;(2)取的中點F,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年航空安全員CET練習試卷附答案
- 當宿舍長的心得體會
- 水滸傳的讀書心得100字
- 2024年新型環(huán)保家具供貨協(xié)議
- 2024年電氣系統(tǒng)定期檢查合同2篇
- 2024年智能化生產(chǎn)車間租賃及智能系統(tǒng)集成合同2篇
- 2024年游泳器材租賃合同3篇
- 2025年全國名校??甲魑模骸翱慈艘创蠊?jié)與最好從小處著眼”
- 2024年度電磁兼容檢測技術服務合同3篇
- 移動軟件開發(fā)課程設計
- 國家安全教育學習通超星期末考試答案章節(jié)答案2024年
- 變壓器巡視課件
- 中國重癥患者腸外營養(yǎng)治療臨床實踐專家共識(2024)解讀
- 精益生產(chǎn)篇(培訓資料)
- 河南省鄭州市鄭東新區(qū)2023-2024學年六年級上學期期末學情調(diào)研數(shù)學試題
- 產(chǎn)品檢驗合格證模板
- 2024年全國職業(yè)院校技能大賽中職組(安全保衛(wèi)賽項)考試題庫(含答案)
- 浙江省建筑防水工程技術規(guī)程
- 非學歷繼續(xù)教育信息化平臺建設需求
- 《冷戰(zhàn)史專題》筆記
- DL∕T 1692-2017 安全工器具柜技術條件
評論
0/150
提交評論