2023-2024學(xué)年安徽省淮南市潘集區(qū)重點名校中考數(shù)學(xué)仿真試卷含解析_第1頁
2023-2024學(xué)年安徽省淮南市潘集區(qū)重點名校中考數(shù)學(xué)仿真試卷含解析_第2頁
2023-2024學(xué)年安徽省淮南市潘集區(qū)重點名校中考數(shù)學(xué)仿真試卷含解析_第3頁
2023-2024學(xué)年安徽省淮南市潘集區(qū)重點名校中考數(shù)學(xué)仿真試卷含解析_第4頁
2023-2024學(xué)年安徽省淮南市潘集區(qū)重點名校中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年安徽省淮南市潘集區(qū)重點名校中考數(shù)學(xué)仿真試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.7的相反數(shù)是()A.7 B.-7 C. D.-2.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.63.以坐標(biāo)原點為圓心,以2個單位為半徑畫⊙O,下面的點中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)4.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°5.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x6.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB7.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元8.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b29.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.10.如表記錄了甲、乙、丙、丁四名跳高運動員最近幾次選拔賽成績的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)185180185180方差3.63.67.48.1根據(jù)表數(shù)據(jù),從中選擇一名成績好且發(fā)揮穩(wěn)定的參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁11.已知x2+mx+25是完全平方式,則m的值為()A.10 B.±10 C.20 D.±2012.如果一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,那么k、b應(yīng)滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,平行四邊形ABCD中,E、F是對角線BD上兩點,連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個符合要求的條件即可)14.的系數(shù)是_____,次數(shù)是_____.15.已知x1,x2是方程x2-3x-1=0的兩根,則=______.16.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=1.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為________.17.太極揉推器是一種常見的健身器材.基本結(jié)構(gòu)包括支架和轉(zhuǎn)盤,數(shù)學(xué)興趣小組的同學(xué)對某太極揉推器的部分?jǐn)?shù)據(jù)進(jìn)行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉(zhuǎn)盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為_____cm.(結(jié)果保留根號)18.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現(xiàn)從袋子中隨機(jī)摸出一個球,則它是黑球的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點P.求反比例函數(shù)y=的表達(dá)式;求點B的坐標(biāo);求△OAP的面積.20.(6分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.21.(6分)解方程組:22.(8分)在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級的總分學(xué)生進(jìn)行體育中考的模擬測試,并對成績進(jìn)行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(shù)(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據(jù)圖表中的信息完成下列問題:(1)本次抽樣調(diào)查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應(yīng)扇形的圓心角α的度數(shù);(3)我校九年級共有700名學(xué)生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?(4)我校決定從本次抽取的A等級學(xué)生(記為甲、乙、丙、丁)中,隨機(jī)選擇2名成為學(xué)校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.23.(8分)某校檢測學(xué)生跳繩水平,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補(bǔ)全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?24.(10分)先化簡,然后從﹣<x<的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.25.(10分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)26.(12分)某學(xué)校要開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.請你根據(jù)圖中信息,回答下列問題:(1)求本次調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“歌曲”所在扇形的圓心角的度數(shù);(3)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個班級的概率是多少?27.(12分)撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】7的相反數(shù)是?7,故選:B.【點睛】此題考查相反數(shù),解題關(guān)鍵在于掌握其定義.2、C【解析】試題解析:∵am=2,an=3,

∴a3m+2n

=a3m?a2n

=(am)3?(an)2

=23×32

=8×9

=1.故選C.3、B【解析】

根據(jù)點到圓心的距離和半徑的數(shù)量關(guān)系即可判定點與圓的位置關(guān)系.【詳解】A選項,(1,1)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),B選項(,)到坐標(biāo)原點的距離為=2,因此點在圓上,C選項(1,3)到坐標(biāo)原點的距離為>2,因此點在圓外D選項(1,)到坐標(biāo)原點的距離為<2,因此點在圓內(nèi),故選B.【點睛】本題主要考查點與圓的位置關(guān)系,解決本題的關(guān)鍵是要熟練掌握點與圓的位置關(guān)系.4、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.5、A【解析】

依據(jù)合并同類項法則、單項式乘單項式法則、積的乘方法則進(jìn)行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運算,熟練掌握相關(guān)法則是解題的關(guān)鍵.6、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.7、C【解析】

根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴(kuò)大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴(kuò)大為原來的3倍,則面積擴(kuò)大為原來的9倍,∴擴(kuò)大后長方形廣告牌的面積=9×6=54m2,∴擴(kuò)大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.8、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D9、A【解析】

根據(jù)一次函數(shù)y=kx+b的圖象可知k>1,b<1,再根據(jù)k,b的取值范圍確定一次函數(shù)y=?bx+k圖象在坐標(biāo)平面內(nèi)的位置關(guān)系,即可判斷.【詳解】解:∵一次函數(shù)y=kx+b的圖象可知k>1,b<1,

∴-b>1,∴一次函數(shù)y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【點睛】本題考查了一次函數(shù)的圖象與系數(shù)的關(guān)系.函數(shù)值y隨x的增大而減小?k<1;函數(shù)值y隨x的增大而增大?k>1;一次函數(shù)y=kx+b圖象與y軸的正半軸相交?b>1,一次函數(shù)y=kx+b圖象與y軸的負(fù)半軸相交?b<1,一次函數(shù)y=kx+b圖象過原點?b=1.10、A【解析】

首先比較平均數(shù),平均數(shù)相同時選擇方差較小的運動員參加.【詳解】∵=>=,∴從甲和丙中選擇一人參加比賽,∵=<<,∴選擇甲參賽,故選A.【點睛】此題主要考查了平均數(shù)和方差的應(yīng)用,解題關(guān)鍵是明確平均數(shù)越高,成績越高,方差越小,成績越穩(wěn)定.11、B【解析】

根據(jù)完全平方式的特點求解:a2±2ab+b2.【詳解】∵x2+mx+25是完全平方式,∴m=±10,故選B.【點睛】本題考查了完全平方公式:a2±2ab+b2,其特點是首平方,尾平方,首尾積的兩倍在中央,這里首末兩項是x和1的平方,那么中間項為加上或減去x和1的乘積的2倍.12、B【解析】試題分析:∵一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數(shù)的性質(zhì)和圖象二、填空題:(本大題共6個小題,每小題4分,共24分.)13、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.

∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.14、1【解析】

根據(jù)單項式系數(shù)及次數(shù)的定義進(jìn)行解答即可.【詳解】根據(jù)單項式系數(shù)和次數(shù)的定義可知,﹣的系數(shù)是,次數(shù)是1.【點睛】本題考查了單項式,熟知單項式中的數(shù)字因數(shù)叫做單項式的系數(shù),一個單項式中所有字母的指數(shù)的和叫做單項式的次數(shù)是解題的關(guān)鍵.15、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.16、6或2.【解析】試題分析:根據(jù)P點的不同位置,此題分兩種情況計算:①點P在CD上;②點P在AD上.①點P在CD上時,如圖:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點C,∵BF=BC=6,∴由勾股定理求得EF=;②點P在AD上時,如圖:先建立相似三角形,過E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(兩角對應(yīng)相等,兩三角形相似),∴對應(yīng)線段成比例:,代入相應(yīng)數(shù)值:,∴EF=2.綜上所述:EF長為6或2.考點:翻折變換(折疊問題).17、10【解析】

作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,F(xiàn)Q∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉(zhuǎn)盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點睛】本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.18、【解析】

用黑球的個數(shù)除以總球的個數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機(jī)摸出一個球,它是黑球的概率為;故答案為.【點睛】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)反比例函數(shù)解析式為y=;(2)點B的坐標(biāo)為(9,3);(3)△OAP的面積=1.【解析】

(1)將點A的坐標(biāo)代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點B的坐標(biāo);(3)先根據(jù)點B坐標(biāo)得出OB所在直線解析式,從而求得直線與雙曲線交點P的坐標(biāo),再利用割補(bǔ)法求解可得.【詳解】(1)將點A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過點A作AC⊥x軸于點C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點B的坐標(biāo)為(9,3);(3)∵點B坐標(biāo)為(9,3),∴OB所在直線解析式為y=x,由可得點P坐標(biāo)為(6,2),(負(fù)值舍去),過點P作PD⊥x軸,延長DP交AB于點E,則點E坐標(biāo)為(6,3),∴AE=2、PE=1、PD=2,則△OAP的面積=×(2+6)×3﹣×6×2﹣×2×1=1.【點睛】本題考查了反比例函數(shù)與幾何圖形綜合,熟練掌握反比例函數(shù)圖象上點的坐標(biāo)特征、正確添加輔助線是解題的關(guān)鍵.20、(1)證明見解析;(2)CD的長為2.【解析】

(1)首先證得△ADE≌△CDE,由全等三角形的性質(zhì)可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據(jù)30°的性質(zhì)和勾股定理可求出EF和DF的長,在Rt△CEF中,根據(jù)勾股定理可求出CF的長,從而可求CD的長.【詳解】證明:(1)在△ADE與△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四邊形ABCD為平行四邊形,∵AD=CD,∴四邊形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【點睛】本題考查了全等三角形的判定與性質(zhì),平行線的性質(zhì),菱形的判定,含30°的直角三角形的性質(zhì),勾股定理.證明AD=BC是解(1)的關(guān)鍵,作EF⊥CD于F,構(gòu)造直角三角形是解(2)的關(guān)鍵.21、【解析】

設(shè)=a,=b,則原方程組化為,求出方程組的解,再求出原方程組的解即可.【詳解】設(shè)=a,=b,則原方程組化為:,①+②得:4a=4,解得:a=1,把a(bǔ)=1代入①得:1+b=3,解得:b=2,即,解得:,經(jīng)檢驗是原方程組的解,所以原方程組的解是.【點睛】此題考查利用換元法解方程組,注意要根據(jù)方程組的特點靈活選用合適的方法.解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理.22、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D組的頻數(shù)除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數(shù)即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數(shù);(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好抽到甲和乙的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應(yīng)扇形的圓心角α的度數(shù)=×360°=36°;(3)700×=140,所以估計體育測試成績在A、B兩個等級的人數(shù)共有140人;(4)畫樹狀圖如下:共12種等可能的結(jié)果數(shù),其中恰好抽到甲和乙的結(jié)果數(shù)為2,所以恰好抽到甲和乙的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖.23、(1)16、84°;(2)C;(3)該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有3000(人)【解析】

(1)根據(jù)百分比=所長人數(shù)÷總?cè)藬?shù),圓心角=百分比,計算即可;(2)根據(jù)中位數(shù)的定義計算即可;(3)用一半估計總體的思考問題即可;【詳解】(1)由題意總?cè)藬?shù)人,D組人數(shù)人;B組的圓心角為;(2)根據(jù)A組6人,B組14人,C組19人,D組16人,E組5人可知本次調(diào)查數(shù)據(jù)中的中位數(shù)落在C組;(3)該校4500名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有人.【點睛】本題主要考查了數(shù)據(jù)的統(tǒng)計,熟練掌握扇形圖圓心角度數(shù)求解方法,總體求解方法等相關(guān)內(nèi)容是解決本題的關(guān)鍵.24、【解析】

根據(jù)分式的減法和除法可以化簡題目中的式子,然后從﹣<x<的范圍內(nèi)選取一個使得原分式有意義的整數(shù)作為x的值代入即可解答本題.【詳解】解:÷(﹣x+1)====,當(dāng)x=﹣2時,原式=.【點睛】本題考查分式的化簡求值、估算無理數(shù)的大小,解答本題的關(guān)鍵是明確分式化簡求值的方法.25、(39+9)米.【解析】

過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據(jù)CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【點睛】本題考查解直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論