版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.2.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.3.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.4.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.35.設復數(shù)滿足,在復平面內對應的點的坐標為則()A. B.C. D.6.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.7.已知集合,集合,那么等于()A. B. C. D.8.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.9.已知等差數(shù)列的前項和為,若,則等差數(shù)列公差()A.2 B. C.3 D.410.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)11.已知函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.12.復數(shù)的共軛復數(shù)記作,已知復數(shù)對應復平面上的點,復數(shù):滿足.則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護士,其中甲乙兩名護士不到同一地,共有__________種選派方法.14.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.15.已知數(shù)列滿足:點在直線上,若使、、構成等比數(shù)列,則______16.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.18.(12分)如圖,在底面邊長為1,側棱長為2的正四棱柱中,P是側棱上的一點,.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個定點Q,使得對任意的實數(shù)m,都有,并證明你的結論.19.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.20.(12分)曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線,的交點分別為、(、異于原點),當斜率時,求的最小值.21.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.22.(10分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.2.A【解析】
設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.3.B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4.C【解析】
對于①中,根據指數(shù)冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數(shù),利用導數(shù)得到函數(shù)為單調遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數(shù),則,所以函數(shù)為單調遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設函數(shù),則,當時,,函數(shù)單調遞增,當時,,函數(shù)單調遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數(shù)在函數(shù)中的綜合應用,其中解答中根據題意,合理構造新函數(shù),利用導數(shù)求得函數(shù)的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.5.B【解析】
根據共軛復數(shù)定義及復數(shù)模的求法,代入化簡即可求解.【詳解】在復平面內對應的點的坐標為,則,,∵,代入可得,解得.故選:B.【點睛】本題考查復數(shù)對應點坐標的幾何意義,復數(shù)模的求法及共軛復數(shù)的概念,屬于基礎題.6.A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.7.A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.8.C【解析】
設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點睛】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.9.C【解析】
根據等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.10.C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.11.A【解析】
首先求得平移后的函數(shù),再根據求的最小值.【詳解】根據題意,的圖象向左平移個單位后,所得圖象對應的函數(shù),所以,所以.又,所以的最小值為.故選:A【點睛】本題考查三角函數(shù)的圖象變換,誘導公式,意在考查平移變換,屬于基礎題型.12.A【解析】
根據復數(shù)的幾何意義得出復數(shù),進而得出,由得出可計算出,由此可計算出.【詳解】由于復數(shù)對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數(shù)模的計算,考查了復數(shù)的坐標表示、共軛復數(shù)以及復數(shù)的除法,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.24【解析】
先求出每地一名醫(yī)生,3名護士的選派方法的種數(shù),再減去甲乙兩名護士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護士的選派方法的種數(shù)有,若甲乙兩名護士到同一地的種數(shù)有,則甲乙兩名護士不到同一地的種數(shù)有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎題.14.【解析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結合思想進行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結合思想和轉化思想.15.13【解析】
根據點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.【點睛】本題考查根據三項成等比數(shù)列求解參數(shù)值的問題,涉及到等比中項的應用,屬于基礎題.16.【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應填答案.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設,得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關鍵是處理好與角的關系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉化為橢圓上的點,到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.(II)曲線C上任意一點到的距離為.則.其中為銳角,且.當時,取到最大值,最大值為.當時,取到最小值,最小值為.【考點定位】1、橢圓和直線的參數(shù)方程;2、點到直線的距離公式;3、解直角三角形.18.(1);(2)存在,Q為線段中點【解析】
解法一:(1)作出平面與平面的交線,可證平面,計算,,得出,從而得出的大小;(2)證明平面,故而可得當Q為線段的中點時.解法二,以為原點,以為建立空間直角坐標系:(1)由,利用空間向量的數(shù)量積可求線面角;(2)設上存在一定點Q,設此點的橫坐標為,可得,由向量垂直,數(shù)量積等于零即可求解.【詳解】(1)解法一:連接交于,設與平面的公共點為,連接,則平面平面,四邊形是正方形,,平面,平面,,又,平面,為直線AP與平面所成角,平面,平面,平面平面,,又為的中點,,,,直線AP與平面所成角為.(2)四邊形正方形,,平面,平面,,又,平面,又平面,,當Q為線段中點時,對于任意的實數(shù),都有.解法二:(1)建立如圖所示的空間直角坐標系,則,,所以,,,又由,,則為平面的一個法向量,設直線AP與平面所成角為,則,故當時,直線AP與平面所成角為.(2)若在上存在一定點Q,設此點的橫坐標為,則,,依題意,對于任意的實數(shù)要使,等價于,即,解得,即當Q為線段中點時,對于任意的實數(shù),都有.【點睛】本題考查了線面垂直的判定定理、線面角的計算,考查了空間向量在立體幾何中的應用,屬于中檔題.19.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數(shù)列中項性質和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.20.(1)的極坐標方程為;曲線的直角坐標方程.(2)【解析】
(1)消去參數(shù),可得曲線的直角坐標方程,再利用極坐標與直角坐標的互化,即可求解.(2)解法1:設直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標方程,得,得出,利用基本不等式,即可求解;解法2:設直線的極坐標方程為,分別代入曲線,的極坐標方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標方程為,即,則曲線的極坐標方程為,即,又因為曲線的極坐標方程為,即,根據,代入即可求解曲線的直角坐標方程.(2)解法1:設直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標方程得:,解得,,,把直線的參數(shù)方程代入曲線的普通坐標方程得:,解得,,,,,即,,,,當且僅當,即時取等號,故的最小值為.解法2:設直線的極坐標方程為),代入曲線的極坐標方程,得,,把直線的參數(shù)方程代入曲線的極坐標方程得:,,即,,曲線的參,即,,,,當且僅當,即時取等號,故的最小值為.【點睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標方程與直角坐標方程點互化,以及直線參數(shù)方程的應用和極坐標方程的應用,其中解答中熟記互化公式,合理應用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21.(1).(2).【解析】
(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設,0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 插圖在小學課本的互動教學作用
- 個性化彩繪協(xié)議規(guī)范文檔2024年版
- 教育機構客戶服務流程的個性化改造
- 數(shù)字化時代的學習心理變革
- 二零二五年度鏟車租賃與道路施工許可證合同3篇
- 教育視域下的學生心理健康挑戰(zhàn)與對策分析
- 網絡安全教育構建孩子信息安全防線
- 漯河2024年河南漯河市立醫(yī)院(漯河市骨科醫(yī)院漯河醫(yī)專二附院)招聘高層次人才筆試歷年參考題庫附帶答案詳解
- 漯河2024年河南漯河市中醫(yī)院招聘高層次人才5人筆試歷年參考題庫附帶答案詳解
- 湖北2025年湖北武漢理工大學專職輔導員招聘筆試歷年參考題庫附帶答案詳解
- 人口老齡化背景下居民養(yǎng)老金融資產配置影響因素研究
- 人教版初中英語單詞大全七八九年級(帶音標) mp3聽力音頻下載
- 2024項目部安全管理人員安全培訓考試題及參考答案(模擬題)
- 《習近平法治思想概論(第二版)》 課件 2. 第二章 習近平法治思想的理論意義
- 2025年中國文玩電商行業(yè)發(fā)展現(xiàn)狀調查、競爭格局分析及未來前景預測報告
- 2024文旅古街元旦沉浸式體驗國風游園會(古巷十二時辰主題)活動方案活動-46正式版
- 英語-2025廣西柳州高三二模試卷和答案
- 電工中級工練習題庫(含參考答案)
- 學校幫扶工作計劃
- 2019年重慶市中考物理試卷(a卷)及答案
- 旅游感知形象研究綜述 論文
評論
0/150
提交評論