2025屆甘肅省靖遠(yuǎn)縣四中學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)含解析_第1頁(yè)
2025屆甘肅省靖遠(yuǎn)縣四中學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)含解析_第2頁(yè)
2025屆甘肅省靖遠(yuǎn)縣四中學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)含解析_第3頁(yè)
2025屆甘肅省靖遠(yuǎn)縣四中學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)含解析_第4頁(yè)
2025屆甘肅省靖遠(yuǎn)縣四中學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆甘肅省靖遠(yuǎn)縣四中學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)圓外一點(diǎn)引圓的兩條切線(xiàn),則經(jīng)過(guò)兩切點(diǎn)的直線(xiàn)方程是().A. B. C. D.2.若直線(xiàn)經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn),則()A. B. C.2 D.3.設(shè),滿(mǎn)足約束條件,則的最大值是()A. B. C. D.4.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.5.已知我市某居民小區(qū)戶(hù)主人數(shù)和戶(hù)主對(duì)戶(hù)型結(jié)構(gòu)的滿(mǎn)意率分別如圖和如圖所示,為了解該小區(qū)戶(hù)主對(duì)戶(hù)型結(jié)構(gòu)的滿(mǎn)意程度,用分層抽樣的方法抽取的戶(hù)主進(jìn)行調(diào)查,則樣本容量和抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,186.已知集合,集合,則()A. B. C. D.7.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線(xiàn)AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為()A. B. C. D.8.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.9.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.10.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件11.已知集合,,則()A. B. C. D.12.已知雙曲線(xiàn):,,為其左、右焦點(diǎn),直線(xiàn)過(guò)右焦點(diǎn),與雙曲線(xiàn)的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線(xiàn)的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.14.如圖,橢圓:的離心率為,F(xiàn)是的右焦點(diǎn),點(diǎn)P是上第一角限內(nèi)任意一點(diǎn),,,若,則的取值范圍是_______.15.在中,角的平分線(xiàn)交于,,,則面積的最大值為_(kāi)_________.16.已知矩形ABCD,AB=4,BC=3,以A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的雙曲線(xiàn)的離心率為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的通項(xiàng),數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知滿(mǎn)足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問(wèn)題中,并完成解答.)19.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍.20.(12分)的內(nèi)角的對(duì)邊分別為,已知.(1)求的大?。唬?)若,求面積的最大值.21.(12分)已知函數(shù),.(1)求函數(shù)在處的切線(xiàn)方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.22.(10分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線(xiàn)上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】過(guò)圓外一點(diǎn),引圓的兩條切線(xiàn),則經(jīng)過(guò)兩切點(diǎn)的直線(xiàn)方程為,故選.2.B【解析】

計(jì)算拋物線(xiàn)的交點(diǎn)為,代入計(jì)算得到答案.【詳解】可化為,焦點(diǎn)坐標(biāo)為,故.故選:.本題考查了拋物線(xiàn)的焦點(diǎn),屬于簡(jiǎn)單題.3.D【解析】

作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過(guò)平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線(xiàn):在可行域內(nèi)平移當(dāng)過(guò)點(diǎn)時(shí),取得最大值.由得:,故選:D本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線(xiàn)性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.4.C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問(wèn)題,屬于中檔題.5.A【解析】

利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù)為:故選A.本題考查樣本容量和抽取的戶(hù)主對(duì)四居室滿(mǎn)意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.6.D【解析】

可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.7.A【解析】

設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點(diǎn)為O,因?yàn)?,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)椋?,解?因?yàn)?,所?設(shè),易知平面ABC,則.因?yàn)?,所以,即,解?所以球Q的半徑.故選:A本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題8.D【解析】

構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個(gè)函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時(shí),則,;當(dāng)時(shí),,.由得.①若,則,即,不合乎題意;②若,則,則,此時(shí),,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時(shí),由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時(shí)要注意對(duì)的取值范圍進(jìn)行分類(lèi)討論,考查推理能力,屬于中等題.9.B【解析】

根據(jù)直線(xiàn)與和都相切,求得的值,由此畫(huà)出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項(xiàng).【詳解】.設(shè)直線(xiàn)與相切于點(diǎn),斜率為,所以切線(xiàn)方程為,化簡(jiǎn)得①.令,解得,,所以切線(xiàn)方程為,化簡(jiǎn)得②.由①②對(duì)比系數(shù)得,化簡(jiǎn)得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線(xiàn)方程為.即.不等式組即,畫(huà)出其對(duì)應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫(huà)出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線(xiàn)的斜率為,直線(xiàn)的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B本小題主要考查根據(jù)公共切線(xiàn)求參數(shù),考查不等式組表示區(qū)域的畫(huà)法,考查圓的方程,考查兩條直線(xiàn)夾角的計(jì)算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問(wèn)題的能力,屬于難題.10.B【解析】

試題分析:通過(guò)逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題11.B【解析】

求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.12.D【解析】

由|AF2|=3|BF2|,可得.設(shè)直線(xiàn)l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線(xiàn)l與曲線(xiàn)C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線(xiàn)的斜率.【詳解】雙曲線(xiàn)C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線(xiàn)l的方程x=my+,m>0,∵雙曲線(xiàn)的漸近線(xiàn)方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線(xiàn)的斜率為,故選D.本題考查直線(xiàn)與雙曲線(xiàn)的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱(chēng)性,考慮時(shí)的情況,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱(chēng)性知:.故答案為:.本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫(huà)出圖像是解題的關(guān)鍵.14.【解析】

由于點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點(diǎn)在橢圓上,所以將點(diǎn)的坐標(biāo)代入橢圓方程中化簡(jiǎn)可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡(jiǎn)得恒成立,由此得,即,故.故答案為:此題考查的是利用橢圓中相關(guān)兩個(gè)點(diǎn)的關(guān)系求離心率,綜合性強(qiáng),屬于難題.15.15【解析】

由角平分線(xiàn)定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫(huà)出圖形:因?yàn)椋?,由角平分線(xiàn)定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時(shí)取等號(hào)所以面積的最大值為15故答案為:15此題考查解三角形面積的最值問(wèn)題,通過(guò)三角恒等變形后利用均值不等式處理,屬于一般性題目.16.2【解析】

根據(jù)為焦點(diǎn),得;又求得,從而得到離心率.【詳解】為焦點(diǎn)在雙曲線(xiàn)上,則又本題正確結(jié)果:本題考查利用雙曲線(xiàn)的定義求解雙曲線(xiàn)的離心率問(wèn)題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】

(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過(guò)直接對(duì)進(jìn)行賦值計(jì)算出的首項(xiàng)和公比,即可求解出的通項(xiàng)公式;(2)的通項(xiàng)公式符合等差乘以等比的形式,采用錯(cuò)位相減法進(jìn)行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設(shè)數(shù)列的公比為,,,解得(2),,,,.本題考查等差、等比數(shù)列的綜合以及錯(cuò)位相減法求和的應(yīng)用,難度一般.判斷是否適合使用錯(cuò)位相減法,可根據(jù)數(shù)列的通項(xiàng)公式是否符合等差乘以等比的形式來(lái)判斷.18.見(jiàn)解析【解析】

選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無(wú)解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無(wú)解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19.(1)或;(2).【解析】

(1)通過(guò)討論的范圍,將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問(wèn)題轉(zhuǎn)化為曲線(xiàn)交點(diǎn)問(wèn)題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時(shí),原不等式可化為,解得;當(dāng)時(shí),原不等式可化為,解得,不滿(mǎn)足,舍去;當(dāng)時(shí),原不等式可化為,解得,所以不等式的解集為.(2)因?yàn)?,所以若函?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.該題考查的是有關(guān)不等式的問(wèn)題,涉及到的知識(shí)點(diǎn)有分類(lèi)討論求絕對(duì)值不等式的解集,將零點(diǎn)問(wèn)題轉(zhuǎn)化為曲線(xiàn)交點(diǎn)的問(wèn)題來(lái)解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡(jiǎn)單題目.20.(1);(2).【解析】

(1)利用正弦定理將邊化角,結(jié)合誘導(dǎo)公式可化簡(jiǎn)邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當(dāng)且僅當(dāng)時(shí)取等號(hào))即三角形面積的最大值為:本題考查解三角形的相關(guān)知識(shí),涉及到正弦定理化簡(jiǎn)邊角關(guān)系式、余弦定理解三角形、三角形面積公式應(yīng)用、基本不等式求積的最大值、誘導(dǎo)公式的應(yīng)用等知識(shí),屬于??碱}型.21.(1)(2)見(jiàn)解析【解析】

(1)因?yàn)?,可得,即可求得答案;?)要證對(duì)任意恒成立,即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,即可求得答案.【詳解】(1),,,函數(shù)在處的切線(xiàn)方程為.(2)要證對(duì)任意恒成立.即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,,令,解得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增.,,,當(dāng)時(shí),對(duì)任意恒成立,即當(dāng)時(shí),對(duì)任意恒成立.本題主要考查了求曲線(xiàn)的切線(xiàn)方程和求證不等式恒成立問(wèn)題,解題關(guān)鍵是掌握由導(dǎo)數(shù)求切線(xiàn)方程的解法和根據(jù)導(dǎo)數(shù)求證不等式恒成立的方法,考查了分析能力和計(jì)算能力,屬于難題.22.(1)證明見(jiàn)解析(2)【解析】

(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線(xiàn)面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線(xiàn)的距離即為點(diǎn)到平面的距離,結(jié)合垂線(xiàn)段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線(xiàn)分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論