版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.32.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.3.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.64.雙曲線的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個(gè)交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.5.設(shè)一個(gè)正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點(diǎn)出發(fā),每次只沿著棱爬行并爬到另一個(gè)頂點(diǎn),算一次爬行,若它選擇三個(gè)方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.6.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.7.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.48.已知集合,,,則的子集共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)9.用一個(gè)平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形10.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.411.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個(gè)單位 B.向左平移個(gè)單位C.向右平移個(gè)單位 D.向右平移個(gè)單位12.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值是______.14.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.15.已知,滿足約束條件則的最小值為__________.16.已知是函數(shù)的極大值點(diǎn),則的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正三棱柱中,,,分別為,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.18.(12分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知,,為正數(shù),且,證明:(1);(2).20.(12分)在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.21.(12分)已知數(shù)列的前n項(xiàng)和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令.求數(shù)列的前n項(xiàng)和.22.(10分)某精密儀器生產(chǎn)車間每天生產(chǎn)個(gè)零件,質(zhì)檢員小張每天都會(huì)隨機(jī)地從中抽取50個(gè)零件進(jìn)行檢查是否合格,若較多零件不合格,則需對其余所有零件進(jìn)行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗(yàn),這些零件的長度服從正態(tài)分布(單位:微米),且相互獨(dú)立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;(2)小張某天恰好從50個(gè)零件中檢查出2個(gè)不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個(gè)零件的成本為10元,而每個(gè)不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機(jī)變量服從正態(tài)分布,則.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點(diǎn)睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.2.D【解析】
通過計(jì)算,可得,最后計(jì)算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.3.A【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過點(diǎn)與的一條漸近線的平行的直線方程,通過解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.4.D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.5.D【解析】
由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據(jù)求數(shù)列的通項(xiàng)知識(shí)可得選項(xiàng).【詳解】由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當(dāng)時(shí),,故選:D.【點(diǎn)睛】本題考查幾何體中的概率問題,關(guān)鍵在于運(yùn)用遞推的知識(shí),得出相鄰的項(xiàng)的關(guān)系,這是常用的方法,屬于難度題.6.D【解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).7.A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題8.B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個(gè)數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個(gè)數(shù)為,真子集個(gè)數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.9.C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點(diǎn):平面的基本性質(zhì)及推論.10.D【解析】
先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因?yàn)槌傻缺葦?shù)列,所以,解得.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式.屬于簡單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.11.A【解析】
運(yùn)用輔助角公式將兩個(gè)函數(shù)公式進(jìn)行變形得以及,按四個(gè)選項(xiàng)分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點(diǎn)睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯(cuò)點(diǎn)有兩個(gè),一個(gè)是混淆了已知函數(shù)和目標(biāo)函數(shù);二是在平移時(shí),忘記乘了自變量前的系數(shù).12.A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)?,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點(diǎn)睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.二、填空題:本題共4小題,每小題5分,共20分。13.8【解析】
由整體代入法利用基本不等式即可求得最小值.【詳解】,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故的最小值為8,故答案為:8.【點(diǎn)睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.14.【解析】
由于,則.15.【解析】
畫出可行域,通過平移基準(zhǔn)直線到可行域邊界位置,由此求得目標(biāo)函數(shù)的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點(diǎn),,構(gòu)成的三角形及其內(nèi)部,當(dāng)直線過點(diǎn)時(shí),取得最小值.故答案為:【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求目標(biāo)函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16.【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴在上單調(diào)遞增,時(shí),,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見詳解;(2).【解析】
(1)取中點(diǎn)為,通過證明//,進(jìn)而證明線面平行;(2)取中點(diǎn)為,以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,求得兩個(gè)平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點(diǎn),連結(jié),,如下圖所示:在中,因?yàn)闉榈闹悬c(diǎn),,且,又為的中點(diǎn),,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點(diǎn),連結(jié),,則,平面,以為原點(diǎn),分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個(gè)法向量,則,則,令.則,同理得平面的一個(gè)法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.18.(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】
(1)根據(jù)列聯(lián)表和獨(dú)立性檢驗(yàn)的公式計(jì)算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因?yàn)闃颖局谐鲂胁淮骺谡值木用裼?0人,其中年輕人有10人,用樣本估計(jì)總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨(dú)立重復(fù)事件的概率公式即可求得結(jié)果.【詳解】(1)由題意可知,有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)由樣本估計(jì)總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點(diǎn)睛】本題主要考查獨(dú)立性檢驗(yàn)及獨(dú)立重復(fù)事件的概率求法,難度一般.19.(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結(jié)合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點(diǎn)睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.20.(1)詳見解析;(2).【解析】
(1)取中點(diǎn),連,可得,結(jié)合平面EAD⊥平面ABCD,可證平面ABCD,進(jìn)而有,再由底面是菱形可得,可得,可證得平面,即可證明結(jié)論;(2)設(shè)底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結(jié)論.【詳解】(1)取中點(diǎn),連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點(diǎn),,平面,平面平面,;(2)設(shè)菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【點(diǎn)睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關(guān)系之間的相互轉(zhuǎn)化,體積問題要熟練應(yīng)用等體積方法,屬于中檔題.21.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 17956:2025 EN Rolling bearings - Method for calculating the effective static safety factor for universally loaded rolling bearings
- 醫(yī)學(xué)合作研究協(xié)議書5篇
- 牛頭包船課程設(shè)計(jì)
- 海報(bào)插圖課程設(shè)計(jì)
- 十四五大數(shù)據(jù)產(chǎn)業(yè)發(fā)展規(guī)劃
- 2024有關(guān)消防演練活動(dòng)總結(jié)(34篇)
- 美術(shù)微課程設(shè)計(jì)與制作
- 幼兒園美食實(shí)踐課程設(shè)計(jì)
- 康復(fù)科護(hù)士的工作體會(huì)
- 有趣的音樂游戲課程設(shè)計(jì)
- 舞蹈興趣小組活動(dòng)記錄
- 醫(yī)院檢驗(yàn)科實(shí)驗(yàn)室生物安全程序文件SOP
- 建立強(qiáng)大的人際影響力與領(lǐng)導(dǎo)力
- 九年級(jí)歷史期末考試質(zhì)量分析
- 視覺傳達(dá)設(shè)計(jì)教資面試
- 三創(chuàng)賽獲獎(jiǎng)-非遺文化創(chuàng)新創(chuàng)業(yè)計(jì)劃書
- 華師大版八年級(jí)下冊數(shù)學(xué)全冊課件
- 慢性高血壓并發(fā)重度子癇前期1
- 常用工具的正確使用
- 管材管件供貨計(jì)劃、運(yùn)輸方案及保障措施及售后服務(wù)
- (2024年)腸梗阻完整版課件
評論
0/150
提交評論