版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為虛數(shù)單位,復(fù)數(shù),則實(shí)數(shù)的值是()A.1 B.-1 C.0 D.22.若復(fù)數(shù)滿(mǎn)足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.43.設(shè),滿(mǎn)足,則的取值范圍是()A. B. C. D.4.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.05.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.126.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.7.對(duì)于函數(shù),若滿(mǎn)足,則稱(chēng)為函數(shù)的一對(duì)“線(xiàn)性對(duì)稱(chēng)點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線(xiàn)性對(duì)稱(chēng)點(diǎn)”,則的最大值為()A. B. C. D.8.已知過(guò)點(diǎn)且與曲線(xiàn)相切的直線(xiàn)的條數(shù)有().A.0 B.1 C.2 D.39.直線(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn)且與拋物線(xiàn)交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.710.三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱(chēng)為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱(chēng)為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.11.陀螺是中國(guó)民間較早的娛樂(lè)工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書(shū)中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長(zhǎng)均為1,粗線(xiàn)畫(huà)出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.12.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為_(kāi)_______.14.若變量x,y滿(mǎn)足:,且滿(mǎn)足,則參數(shù)t的取值范圍為_(kāi)______.15.雙曲線(xiàn)的左焦點(diǎn)為,點(diǎn),點(diǎn)P為雙曲線(xiàn)右支上的動(dòng)點(diǎn),且周長(zhǎng)的最小值為8,則雙曲線(xiàn)的實(shí)軸長(zhǎng)為_(kāi)_______,離心率為_(kāi)_______.16.已知向量與的夾角為,||=||=1,且⊥(λ),則實(shí)數(shù)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時(shí),①求函數(shù)在點(diǎn)處的切線(xiàn)方程;②比較與的大小;(2)當(dāng)時(shí),若對(duì)時(shí),,且有唯一零點(diǎn),證明:.18.(12分)在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)極坐標(biāo)方程為.若直線(xiàn)交曲線(xiàn)于,兩點(diǎn),求線(xiàn)段的長(zhǎng).19.(12分)已知集合,.(1)若,則;(2)若,求實(shí)數(shù)的取值范圍.20.(12分)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點(diǎn),且△ACD的面積為,求sin∠ADB.21.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線(xiàn)上任意一點(diǎn),證明:MH∥平面;(2)若直線(xiàn)與直線(xiàn)所成角為,求二面角的余弦值.22.(10分)在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(Ⅰ)求的極坐標(biāo)方程和的直角坐標(biāo)方程;(Ⅱ)設(shè)分別交于兩點(diǎn)(與原點(diǎn)不重合),求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運(yùn)算化簡(jiǎn)可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.2.B【解析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,表示復(fù)數(shù)對(duì)應(yīng)的點(diǎn)與點(diǎn)間的距離,又復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在圓的圓心到的距離為1,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.3.C【解析】
首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿(mǎn)足,可行域如下圖所示,可知目標(biāo)函數(shù)在點(diǎn)處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點(diǎn)睛】本題主要考查了線(xiàn)性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問(wèn)題,屬于基礎(chǔ)題.4.B【解析】
根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.5.A【解析】
由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來(lái),繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.6.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿(mǎn)足條件;B中,函數(shù)為奇函數(shù),不滿(mǎn)足條件;C中,函數(shù)為偶函數(shù)且,滿(mǎn)足條件;D中,函數(shù)為偶函數(shù),但,不滿(mǎn)足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.7.D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線(xiàn)性對(duì)稱(chēng)點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線(xiàn)性對(duì)稱(chēng)點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.8.C【解析】
設(shè)切點(diǎn)為,則,由于直線(xiàn)經(jīng)過(guò)點(diǎn),可得切線(xiàn)的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線(xiàn)與曲線(xiàn)切于點(diǎn),則,又∵,∴,∴,解得,,∴過(guò)點(diǎn)與曲線(xiàn)相切的直線(xiàn)方程為或,故選C.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求曲線(xiàn)上過(guò)某點(diǎn)切線(xiàn)方程的斜率,求解曲線(xiàn)的切線(xiàn)的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線(xiàn)的方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.9.B【解析】
根據(jù)拋物線(xiàn)中過(guò)焦點(diǎn)的兩段線(xiàn)段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線(xiàn)標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€(xiàn)l過(guò)拋物線(xiàn)的焦點(diǎn),由過(guò)拋物線(xiàn)焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€(xiàn)段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線(xiàn)的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.10.A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點(diǎn)睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗(yàn)構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個(gè)連續(xù)變量可建立與長(zhǎng)度有關(guān)的幾何概型,只需把這個(gè)變量放在數(shù)軸上即可;(2)若一個(gè)隨機(jī)事件需要用兩個(gè)變量來(lái)描述,則可用這兩個(gè)變量的有序?qū)崝?shù)對(duì)來(lái)表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個(gè)隨機(jī)事件需要用三個(gè)連續(xù)變量來(lái)描述,則可用這三個(gè)變量組成的有序數(shù)組來(lái)表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.11.C【解析】
根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線(xiàn)長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,下面圓錐的母線(xiàn)長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,沒(méi)被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國(guó)古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.12.B【解析】
,選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.14.【解析】
根據(jù)變量x,y滿(mǎn)足:,畫(huà)出可行域,由,解得直線(xiàn)過(guò)定點(diǎn),直線(xiàn)繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿(mǎn)足:,畫(huà)出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線(xiàn)過(guò)定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿(mǎn)足條件,當(dāng)時(shí),直線(xiàn)得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.15.22【解析】
設(shè)雙曲線(xiàn)的右焦點(diǎn)為,根據(jù)周長(zhǎng)為,計(jì)算得到答案.【詳解】設(shè)雙曲線(xiàn)的右焦點(diǎn)為.周長(zhǎng)為:.當(dāng)共線(xiàn)時(shí)等號(hào)成立,故,即實(shí)軸長(zhǎng)為,.故答案為:;.【點(diǎn)睛】本題考查雙曲線(xiàn)周長(zhǎng)的最值問(wèn)題,離心率,實(shí)軸長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.16.1【解析】
根據(jù)條件即可得出,由即可得出,進(jìn)行數(shù)量積的運(yùn)算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,以及向量垂直的充要條件.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)①見(jiàn)解析,②見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線(xiàn)方程的點(diǎn)斜式求函數(shù)在點(diǎn)處的切線(xiàn)方程;②令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.(2)由題意,,在上有唯一零點(diǎn).利用導(dǎo)數(shù)可得當(dāng)時(shí),在上單調(diào)遞減,當(dāng),時(shí),在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當(dāng)時(shí),,,,又,切線(xiàn)方程為,即;②令,則,在上單調(diào)遞減.又,當(dāng)時(shí),,即;當(dāng)時(shí),,即;當(dāng)時(shí),,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點(diǎn).當(dāng)時(shí),,在上單調(diào)遞減,當(dāng),時(shí),,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究過(guò)曲線(xiàn)上某點(diǎn)處的切線(xiàn)方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.18.【解析】
由,化簡(jiǎn)得,由,所以直線(xiàn)的直角坐標(biāo)方程為,因?yàn)榍€(xiàn)的參數(shù)方程為,整理得,直線(xiàn)的方程與曲線(xiàn)的方程聯(lián)立,,整理得,設(shè),則,根據(jù)弦長(zhǎng)公式求解即可.【詳解】由,化簡(jiǎn)得,又因?yàn)?,所以直線(xiàn)的直角坐標(biāo)方程為,因?yàn)榍€(xiàn)的參數(shù)方程為,消去,整理得,將直線(xiàn)的方程與曲線(xiàn)的方程聯(lián)立,,消去,整理得,設(shè),則,所以,將,代入上式,整理得.【點(diǎn)睛】本題考查參數(shù)方程,極坐標(biāo)方程的應(yīng)用,結(jié)合弦長(zhǎng)公式的運(yùn)用,屬于中檔題.19.(1);(2)【解析】
(1)將代入可得集合B,解對(duì)數(shù)不等式可得集合A,由并集運(yùn)算即可得解.(2)由可知B為A的子集,即;當(dāng)符合題意,當(dāng)B不為空集時(shí),由不等式關(guān)系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因?yàn)?,故;若,即時(shí),,符合題意;若,即時(shí),,解得;綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了集合的并集運(yùn)算,由集合的包含關(guān)系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎(chǔ)題.20.(1);(2).【解析】
(1)根據(jù)誘導(dǎo)公式和二倍角公式,將已知等式化為角關(guān)系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根據(jù)面積公式求出長(zhǎng),根據(jù)余弦定理求出,由正弦定理求出,即可求出結(jié)論.【詳解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【點(diǎn)睛】本題考查三角恒等變換求值、面積公式、余弦定理、正弦定理解三角形,考查計(jì)算求解能力,屬于中檔題.21.(1)見(jiàn)解析(2)【解析】
(1)根據(jù)中位線(xiàn)證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線(xiàn)與直線(xiàn)所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建師范大學(xué)《復(fù)變函數(shù)與積分變換》2023-2024學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《勞動(dòng)和社會(huì)保障法》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024-2030年全球與中國(guó)元素雜質(zhì)分析市場(chǎng)運(yùn)營(yíng)現(xiàn)狀及前景趨勢(shì)預(yù)測(cè)報(bào)告
- 涉企經(jīng)營(yíng)許可事項(xiàng)告知承諾書(shū)(印刷經(jīng)營(yíng)許可證核發(fā)及變更事項(xiàng)審批)
- 幼兒進(jìn)餐入廁睡眠觀察記錄表
- 2024屆新疆阿克蘇市第一師高級(jí)中學(xué)高三第二次聯(lián)考數(shù)學(xué)試題文試題
- 2024年蘭州道路客運(yùn)輸從業(yè)資格證培訓(xùn)資料
- 2024年北京客運(yùn)資格證的要求
- 2024年南京客運(yùn)考試模擬題及答案詳解
- 2024年呼和浩特客運(yùn)資格證實(shí)操考試題目?jī)?nèi)容是什么
- 國(guó)有企業(yè)共青團(tuán)創(chuàng)新工作方法研究
- 建筑行業(yè)(建筑工程)建設(shè)項(xiàng)目設(shè)計(jì)方案規(guī)模劃分表.doc
- 辦理營(yíng)業(yè)執(zhí)照委托書(shū)
- 集裝箱設(shè)計(jì)PPT課件
- 道路交通標(biāo)志與標(biāo)線(xiàn)PPT課件
- 實(shí)習(xí)實(shí)訓(xùn)報(bào)告-墊片復(fù)合沖壓模具的設(shè)計(jì)
- 35kv變電所電氣部分設(shè)計(jì)(有設(shè)計(jì)源圖)
- 編寫(xiě)標(biāo)準(zhǔn)必備文件 國(guó)家標(biāo)準(zhǔn) 地方標(biāo)準(zhǔn) 行業(yè)標(biāo)準(zhǔn) 企業(yè)標(biāo)準(zhǔn) 格式模板大全
- 全面預(yù)算實(shí)施方案(共8篇)
- 天津市南開(kāi)中學(xué)2020-2021學(xué)年高一上學(xué)期期中考試物理試題含答案
- 建設(shè)工程施工勞務(wù)分包合同(地坪)(完整版)
評(píng)論
0/150
提交評(píng)論