2021-2022學年廣西北流、陸川、容縣中考二模數(shù)學試題含解析_第1頁
2021-2022學年廣西北流、陸川、容縣中考二模數(shù)學試題含解析_第2頁
2021-2022學年廣西北流、陸川、容縣中考二模數(shù)學試題含解析_第3頁
2021-2022學年廣西北流、陸川、容縣中考二模數(shù)學試題含解析_第4頁
2021-2022學年廣西北流、陸川、容縣中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022學年廣西北流、陸川、容縣中考二模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是A. B. C. D.2.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°3.我省2013年的快遞業(yè)務(wù)量為1.2億件,受益于電子商務(wù)發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務(wù)迅猛發(fā)展,2012年增速位居全國第一.若2015年的快遞業(yè)務(wù)量達到2.5億件,設(shè)2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.54.已知點為某封閉圖形邊界上一定點,動點從點出發(fā),沿其邊界順時針勻速運動一周.設(shè)點運動的時間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.5.cos60°的值等于()A.1 B. C. D.6.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了7.如圖,在直角坐標系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內(nèi)把線段AB縮小后得到線段CD,則點C的坐標為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)8.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數(shù)的圖象與AB邊交于點D,與BC邊交于點E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.9.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形10.如圖所示的幾何體的俯視圖是(

)A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.一元二次方程x2=3x的解是:________.12.已知三個數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.13.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.14.化簡:=____.15.使分式x216.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結(jié)論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結(jié)論的序號都填上)三、解答題(共8題,共72分)17.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調(diào)運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設(shè)從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調(diào)運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設(shè)A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關(guān)系式,并求總運費最小的調(diào)運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調(diào)動方案.18.(8分)某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;求購買一個甲種足球、一個乙種足球各需多少元;2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?19.(8分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變?yōu)?m,求水面上漲的高度.20.(8分)在平面直角坐標系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點.(1)求拋物線的表達式及點B的坐標;(2)當﹣2<x<3時的函數(shù)圖象記為G,求此時函數(shù)y的取值范圍;(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M.若經(jīng)過點C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內(nèi)有兩個公共點,結(jié)合圖象求b的取值范圍.21.(8分)為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:(1)此次共調(diào)查了多少人?(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);(3)請將條形統(tǒng)計圖補充完整;(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?22.(10分)據(jù)報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學生會想知道學生對這個提議的了解程度,隨機抽取部分學生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有___名,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為___;請補全條形統(tǒng)計圖;(2)若該校共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總?cè)藬?shù);(3)“剪刀石頭布”比賽時雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.23.(12分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標.24.我校對全校學生進傳統(tǒng)文化禮儀知識測試,為了了解測試結(jié)果,隨機抽取部分學生的成績進行分析,現(xiàn)將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機抽取的人數(shù)是人,并將以上兩幅統(tǒng)計圖補充完整;(2)若“一般”和“優(yōu)秀”均被視為達標成績,則我校被抽取的學生中有人達標;(3)若我校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方逐一判斷即可.【詳解】、與不是同類項,不能合并,此選項錯誤;、,此選項錯誤;、,此選項正確;、,此選項錯誤.故選:.【點睛】此題考查的是整式的運算,掌握同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方是解決此題的關(guān)鍵.2、A【解析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內(nèi)角與外角;三角形內(nèi)角和定理.3、C【解析】試題解析:設(shè)2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.4、A【解析】

解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點的運動時間成正比.段,逐漸減小,到達最小值時又逐漸增大,排除、選項,段,逐漸減小直至為,排除選項.故選.【點睛】本題考查了動點問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.5、A【解析】

根據(jù)特殊角的三角函數(shù)值直接得出結(jié)果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數(shù)值是解題的關(guān)鍵.6、A【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關(guān)鍵是熟練的掌握正方體相對兩個面上的文字.7、A【解析】

根據(jù)位似變換的性質(zhì)可知,△ODC∽△OBA,相似比是,根據(jù)已知數(shù)據(jù)可以求出點C的坐標.【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標為:(2,1),故選A.【點睛】本題考查的是位似變換,掌握位似變換與相似的關(guān)系是解題的關(guān)鍵,注意位似比與相似比的關(guān)系的應(yīng)用.8、B【解析】

根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設(shè)EG=x,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關(guān)于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設(shè)EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.9、B【解析】

如果兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應(yīng)角相等,對應(yīng)邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應(yīng)角不一定相等,矩形的邊不一定對應(yīng)成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊成比例,對應(yīng)角相等,兩個條件必須同時具備.10、B【解析】

根據(jù)俯視圖是從上往下看得到的圖形解答即可.【詳解】從上往下看得到的圖形是:故選B.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線二、填空題(本大題共6個小題,每小題3分,共18分)11、x1=0,x2=1【解析】

先移項,然后利用因式分解法求解.【詳解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案為:x1=0,x2=1【點睛】本題考查了解一元二次方程-因式分解法:先把方程右邊變形為0,再把方程左邊分解為兩個一次式的乘積,這樣原方程轉(zhuǎn)化為兩個一元一次方程,然后解一次方程即可得到一元二次方程的解12、±1【解析】

先由平均數(shù)的計算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進行計算,即可求出x的值.【詳解】解:這三個數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點睛】本題考查方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.13、【解析】

如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.14、【解析】

先利用除法法則變形,約分后通分并利用同分母分式的減法法則計算即可.【詳解】原式,

故答案為【點睛】本題考查了分式的混合運算,熟練掌握運算法則是解題的關(guān)鍵.15、1【解析】試題分析:根據(jù)題意可知這是分式方程,x2答案為1.考點:分式方程的解法16、②③④【解析】

①可用特殊值法證明,當為的中點時,,可見.②可連接,交于點,先根據(jù)證明,得到,根據(jù)矩形的性質(zhì)可得,故,又因為,故,故.③先證明,得到,再根據(jù),得到,代換可得.④根據(jù),可知當取最小值時,也取最小值,根據(jù)點到直線的距離也就是垂線段最短可得,當時,取最小值,再通過計算可得.【詳解】解:①錯誤.當為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質(zhì),全等三角形與相似三角形的性質(zhì)與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關(guān)知識點是解答關(guān)鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調(diào)運方案總運費最?。籱=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】

(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關(guān)系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調(diào)運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關(guān)系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調(diào)運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關(guān)系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調(diào)運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調(diào)運方案總運費最小;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小,其調(diào)運方案如表二.【點睛】此題考查一次函數(shù)的應(yīng)用,解題關(guān)鍵在于根據(jù)題意列出w與x之間的函數(shù)關(guān)系式,并注意分類討論思想的應(yīng)用.18、(1)購買一個甲種足球需要50元,購買一個乙種籃球需要1元(2)這所學校最多可購買2個乙種足球【解析】

(1)根據(jù)題意可以列出相應(yīng)的分式方程,從而可以求得購買一個甲種足球、一個乙種足球各需多少元;(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以求得這所學校最多可購買多少個乙種足球.【詳解】(1)設(shè)購買一個甲種足球需要x元,則購買一個乙種籃球需要(x+2)元,根據(jù)題意得:,解得:x=50,經(jīng)檢驗,x=50是原方程的解,且符合題意,∴x+2=1.答:購買一個甲種足球需要50元,購買一個乙種籃球需要1元.(2)設(shè)可購買m個乙種足球,則購買(50﹣m)個甲種足球,根據(jù)題意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:這所學校最多可購買2個乙種足球.【點睛】本題考查分式方程的應(yīng)用,一元一次不等式的應(yīng)用,解答此類問題的關(guān)鍵是明確題意,列出相應(yīng)的分式方程和一元一次不等式,注意分式方程要檢驗,問題(2)要與實際相聯(lián)系.19、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據(jù)拋物線在坐標系的位置,可用待定系數(shù)法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結(jié)論.試題解析:解:方案1:(1)點B的坐標為(5,0),設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設(shè)拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.20、(1)拋物線的表達式為y=x2﹣2x﹣2,B點的坐標(﹣1,0);(2)y的取值范圍是﹣3≤y<1.(2)b的取值范圍是﹣<b<.【解析】

(1)、將點A坐標代入求出m的值,然后根據(jù)二次函數(shù)的性質(zhì)求出點B的坐標;(2)、將二次函數(shù)配成頂點式,然后根據(jù)二次函數(shù)的增減性得出y的取值范圍;(2)、根據(jù)函數(shù)經(jīng)過(-1,0)、(3,2)和(0,-2)、(3,2)分別求出兩個一次函數(shù)的解析式,從而得出b的取值范圍.【詳解】(1)∵將A(2,0)代入,得m=1,∴拋物線的表達式為y=-2x-2.令-2x-2=0,解得:x=2或x=-1,∴B點的坐標(-1,0).(2)y=-2x-2=-3.∵當-2<x<1時,y隨x增大而減小,當1≤x<2時,y隨x增大而增大,∴當x=1,y最小=-3.又∵當x=-2,y=1,∴y的取值范圍是-3≤y<1.(2)當直線y=kx+b經(jīng)過B(-1,0)和點(3,2)時,解析式為y=x+.當直線y=kx+b經(jīng)過(0,-2)和點(3,2)時,解析式為y=x-2.由函數(shù)圖象可知;b的取值范圍是:-2<b<.【點睛】本題主要考查的就是二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)以及函數(shù)的交點問題.在解決第二個問題的時候,我們首先必須要明確給出x的取值范圍是否是在對稱軸的一邊還是兩邊,然后根據(jù)函數(shù)圖形進行求解;對于第三問我們必須能夠根據(jù)題意畫出函數(shù)圖象,然后根據(jù)函數(shù)圖象求出取值范圍.在解決二次函數(shù)的題目時,畫圖是非常關(guān)鍵的基本功.21、(1)200;(2)108°;(3)答案見解析;(4)600【解析】試題分析:(1)根據(jù)體育人數(shù)80人,占40%,可以求出總?cè)藬?shù).(2)根據(jù)圓心角=百分比×360°即可解決問題.(3)求出藝術(shù)類、其它類社團人數(shù),即可畫出條形圖.(4)用樣本百分比估計總體百分比即可解決問題.試題解析:(1)80÷40%=200(人).

∴此次共調(diào)查200人.

(2)×360°=108°.∴文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)為108°.

(3)補全如圖,(4)1500×40%=600(人).

∴估計該校喜歡體育類社團的學生有600人.【點睛】此題主要考查了條形圖與統(tǒng)計表以及扇形圖的綜合應(yīng)用,由條形圖與扇形圖結(jié)合得出調(diào)查的總?cè)藬?shù)是解決問題的關(guān)鍵,學會用樣本估計總體的思想,屬于中考??碱}型.22、(1)60;90°;統(tǒng)計圖詳見解析;(2)300;(3).【解析】試題分析:(1)由“了解很少”的人數(shù)除以占的百分比得出學生總數(shù),求出“基本了解”的學生占的百分比,乘以360得到結(jié)果,補全條形統(tǒng)計圖即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到結(jié)果;(3)列表得出所有等可能的情況數(shù),找出兩人打平的情況數(shù),即可求出所求的概率.試題解析:(1)根據(jù)題意得:30÷50%=60(名),“了解”人數(shù)為60﹣(15+30+10)=5(名),“基本了解”占的百分比為×100%=25%,占的角度為25%×360°=90°,補全條形統(tǒng)計圖如圖所示:(2)根據(jù)題意得:900×=300(人),則估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總?cè)藬?shù)為300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情況有9種,其中兩人打平的情況有3種,則P==.考點:1、條形統(tǒng)計圖,2、扇形統(tǒng)計圖,3、列表法與樹狀圖法23、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】

(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設(shè)直線BD的解析式,代入點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論