版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022學年湖南省東安縣市級名校中考數(shù)學考前最后一卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,三棱柱ABC﹣A1B1C1的側(cè)棱長和底面邊長均為2,且側(cè)棱AA1⊥底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(cè)(左)視圖的面積為()A. B. C. D.42.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或63.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐4.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉(zhuǎn),使ON邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C逆時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);……在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.45.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應(yīng)點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或56.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.7.春季是傳染病多發(fā)的季節(jié),積極預(yù)防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關(guān)系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時間達到了C.當室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達到開始,需經(jīng)過后,學生才能進入室內(nèi)8.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.9.已知兩點都在反比例函數(shù)圖象上,當時,,則的取值范圍是()A. B. C. D.10.不等式組的解集為.則的取值范圍為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.我國倡導(dǎo)的“一帶一路”建設(shè)將促進我國與世界各國的互利合作,“一帶一路”地區(qū)覆蓋總?cè)丝诩s為4400000000人,將數(shù)據(jù)4400000000用科學記數(shù)法表示為______.12.觀察下列一組數(shù),,,,,…探究規(guī)律,第n個數(shù)是_____.13.一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點C1的坐標是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點D2018縱坐標是_____.14.關(guān)于x的一元二次方程x2+2x+k=0有兩個不相等的實數(shù)根,則k的取值范圍是_____.15.如圖是一本折扇,其中平面圖是一個扇形,扇面ABDC的寬度AC是管柄長OA的一半,已知OA=30cm,∠AOB=120°,則扇面ABDC的周長為_____cm16.一個圓錐的高為3,側(cè)面展開圖是半圓,則圓錐的側(cè)面積是_________三、解答題(共8題,共72分)17.(8分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.18.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.19.(8分)為節(jié)約用水,某市居民生活用水按階梯式水價計量,水價分為三個階梯,價格表如下表所示:某市自來水銷售價格表類別月用水量(立方米)供水價格(元/立方米)污水處理費(元/立方米)居民生活用水階梯一0~18(含18)1.901.00階梯二18~25(含25)2.85階梯三25以上5.70(注:居民生活用水水價=供水價格+污水處理費)(1)當居民月用水量在18立方米及以下時,水價是_____元/立方米.(2)4月份小明家用水量為20立方米,應(yīng)付水費為:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)預(yù)計6月份小明家的用水量將達到30立方米,請計算小明家6月份的水費.(3)為了節(jié)省開支,小明家決定每月用水的費用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議20.(8分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.21.(8分)知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)22.(10分)((1)計算:;(2)先化簡,再求值:,其中a=.23.(12分)先化簡,再求值:,再從的范圍內(nèi)選取一個你最喜歡的值代入,求值.24.解方程:x2-4x-5=0
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側(cè)棱長,把相關(guān)數(shù)值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(cè)(左)視圖的面積為2×,故選B.點睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關(guān)鍵是得到求左視圖的面積的等量關(guān)系,難點是得到側(cè)面積的寬度.2、C【解析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內(nèi)容,理解題意是解題關(guān)鍵.3、C【解析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.4、D【解析】
如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關(guān)鍵.5、A【解析】
連接B′D,過點B′作B′M⊥AD于M.設(shè)DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質(zhì)和折疊的性質(zhì)得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應(yīng)點B′落在∠ADC的角平分線上,∴設(shè)DM=B′M=x,則AM=7﹣x,又由折疊的性質(zhì)知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【點睛】本題考查的是翻折變換的性質(zhì),掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.6、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.7、C【解析】
利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.【點睛】本題考查反比例函數(shù)的應(yīng)用、一次函數(shù)的應(yīng)用等知識,解題的關(guān)鍵是讀懂圖象信息,屬于中考常考題型.8、C【解析】
根據(jù)圓的弦的性質(zhì),連接DC,計算CD的長,再根據(jù)直角三角形的三角函數(shù)計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數(shù)的計算,結(jié)合考查圓性質(zhì)的計算,關(guān)鍵在于利用等量替代原則.9、B【解析】
根據(jù)反比例函數(shù)的性質(zhì)判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,
∴在每個象限y隨x的增大而增大,
∴k<0,
故選:B.【點睛】本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì).10、B【解析】
求出不等式組的解集,根據(jù)已知得出關(guān)于k的不等式,求出不等式的解集即可.【詳解】解:解不等式組,得.∵不等式組的解集為x<2,∴k+1≥2,解得k≥1.故選:B.【點睛】本題考查了解一元一次不等式組的應(yīng)用,解此題的關(guān)鍵是能根據(jù)不等式組的解集和已知得出關(guān)于k的不等式,難度適中.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.4×1【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】4400000000的小數(shù)點向左移動9位得到4.4,所以4400000000用科學記數(shù)法可表示為:4.4×1,故答案為4.4×1.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.12、【解析】
根據(jù)已知得出數(shù)字分母與分子的變化規(guī)律,分子是連續(xù)的正整數(shù),分母是連續(xù)的奇數(shù),進而得出第n個數(shù)分子的規(guī)律是n,分母的規(guī)律是2n+1,進而得出這一組數(shù)的第n個數(shù)的值.【詳解】解:因為分子的規(guī)律是連續(xù)的正整數(shù),分母的規(guī)律是2n+1,
所以第n個數(shù)就應(yīng)該是:,
故答案為.【點睛】此題主要考查了數(shù)字變化規(guī)律,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.解題的關(guān)鍵是把數(shù)據(jù)的分子分母分別用組數(shù)n表示出來.13、×()2【解析】
利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進而得出變化規(guī)律即可得出答案.【詳解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的邊長=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的縱坐標為×()2,故答案為×()2.【點睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵14、k<1【解析】
根據(jù)一元二次方程根的判別式結(jié)合題意進行分析解答即可.【詳解】∵關(guān)于x的一元二次方程x2+2x+k=0有兩個不相等的實數(shù)根,∴△=22解得:k<1.故答案為:k<1.【點睛】熟知“在一元二次方程ax2+bx+c=0(a≠0)15、1π+1.【解析】分析:根據(jù)題意求出OC,根據(jù)弧長公式分別求出AB、CD的弧長,根據(jù)扇形周長公式計算.詳解:由題意得,OC=AC=OA=15,的長==20π,的長==10π,∴扇面ABDC的周長=20π+10π+15+15=1π+1(cm),故答案為1π+1.點睛:本題考查的是弧長的計算,掌握弧長公式:是解題的關(guān)鍵.16、18π【解析】解:設(shè)圓錐的半徑為,母線長為.則解得三、解答題(共8題,共72分)17、【解析】
根據(jù)已知得該三角形為直角三角形,利用三角函數(shù)公式求出各邊的值,再利用三角形的面積公式求解.【詳解】如圖:由已知可得:∠A=30°,∠B=60°,∴△ABC為直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=10=5,AC=AB·cos30°=10=,∴S△ABC=.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.18、(1)證明見解析;(2)CE=1.【解析】
(1)根據(jù)等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內(nèi)錯角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=∠ACB=90°,
∴AC是⊙O的切線.
(2)解:過O作OH⊥BF,
∴BH=BF=3,四邊形OHCE是矩形,
∴CE=OH,
在Rt△OBH中,BH=3,OB=5,
∴OH==1,
∴CE=1.【點睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運用,具有一定的綜合性.19、(1)1.90;(2)112.65元;(3)當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.【解析】試題分析:(1)由表中數(shù)據(jù)可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可知小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知條件可知,用水量為18立方米時,應(yīng)交水費52.2元,當用水量為25立方米時,應(yīng)交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不會超過25立方米,設(shè)他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超過24立方米.試題解析:(1)由表中數(shù)據(jù)可知,當用水量在18立方米及以下時,水價為1.9元/立方米;(2)由題意可得:小明家6月份的水費是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由題意可知,當用水量為18立方米時,應(yīng)交水費52.2元,當用水量為25立方米時,應(yīng)交水費79.15元,而小明家計劃的水費不超過75.3元,由此可知他們家的用水量不超過18立方米,而不足25立方米,設(shè)他們家的用水量為x立方米,則由題意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,∴當小明家每月的用水量不要超過24立方米時,水費就不會超過他們家庭總收入的1%.20、米.【解析】
先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設(shè)拋物線的表達式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邢臺學院《體育測量與評價》2023-2024學年第一學期期末試卷
- 《伊利集團股權(quán)激勵動因和實施效果分析》
- 旅游景區(qū)環(huán)境衛(wèi)生整治方案
- 邢臺學院《環(huán)境科學概論實踐》2021-2022學年第一學期期末試卷
- 旅行社員工心理素質(zhì)提升方案
- 商場公廁衛(wèi)生管理方案
- 物流倉庫出入管理制度
- 能源項目成本控制與管理方案
- 商用廚房消防通風排煙設(shè)施施工方案
- 2024至2030年銅版工藝畫項目投資價值分析報告
- 機電安裝單價表
- 英語管道專業(yè)術(shù)語
- 隧道襯砌環(huán)向裂縫的成因分析及預(yù)防建議
- 淺談?wù)Z文課程內(nèi)容的橫向聯(lián)系
- 職業(yè)衛(wèi)生防護設(shè)施臺賬
- 社會工作畢業(yè)論文(優(yōu)秀范文8篇)
- 五篇500字左右的短劇劇本
- 新形勢下如何加強醫(yī)院新聞宣傳工作
- 數(shù)據(jù)通信技術(shù)方式及其運用分析
- 輸變電工程電子化移交測錄費用標準研究
- 第十一章總集與別集(杜澤遜版)
評論
0/150
提交評論