版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年上海市實驗校中考數(shù)學模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB.點P從A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結(jié)束.設運動時間為x,弦BP的長度為y,那么下面圖象中可能表示y與x的函數(shù)關系的是A.① B.④ C.②或④ D.①或③2.估計的值在()A.4和5之間 B.5和6之間 C.6和7之間 D.7和8之間3.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=4.已知一次函數(shù)y=ax﹣x﹣a+1(a為常數(shù)),則其函數(shù)圖象一定過象限()A.一、二 B.二、三 C.三、四 D.一、四5.如圖,?ABCD對角線AC與BD交于點O,且AD=3,AB=5,在AB延長線上取一點E,使BE=AB,連接OE交BC于F,則BF的長為()A. B. C. D.16.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.137.把直線l:y=kx+b繞著原點旋轉(zhuǎn)180°,再向左平移1個單位長度后,經(jīng)過點A(-2,0)和點B(0,4),則直線l的表達式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-28.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°9.下列圖形不是正方體展開圖的是()A. B.C. D.10.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在四邊形ABCD中,AC、BD是對角線,AC=AD,BC>AB,AB∥CD,AB=4,BD=213,tan∠BAC=33,則線段BC的長是_____.12.已知二次函數(shù),與的部分對應值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關于的方程的解為;④.其中,正確的有___________________.13.一個布袋中裝有1個藍色球和2個紅色球,這些球除顏色外其余都相同,隨機摸出一個球后放回搖勻,再隨機摸出一個球,則兩次摸出的球都是紅球的概率是_____.14.在平面直角坐標系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.15.中,,,高,則的周長為______。16.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點D、E分別為AM、AB上的動點,則BD+DE的最小值是_____.17.已知關于x的一元二次方程(a-1)x2-2x+1=0有兩個不相等的實數(shù)根,則a的取值范圍是_______________.三、解答題(共7小題,滿分69分)18.(10分)某初中學校組織200位同學參加義務植樹活動.甲、乙兩位同學分別調(diào)查了30位同學的植樹情況,并將收集的數(shù)據(jù)進行了整理,繪制成統(tǒng)計表1和表2:表1:甲調(diào)查九年級30位同學植樹情況每人植樹棵數(shù)78910人數(shù)36156表2:乙調(diào)查三個年級各10位同學植樹情況每人植樹棵數(shù)678910人數(shù)363126根據(jù)以上材料回答下列問題:(1)關于于植樹棵數(shù),表1中的中位數(shù)是棵;表2中的眾數(shù)是棵;(2)你認為同學(填“甲”或“乙”)所抽取的樣本能更好反映此次植樹活動情況;(3)在問題(2)的基礎上估計本次活動200位同學一共植樹多少棵?19.(5分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.20.(8分)某校為了了解九年級學生體育測試成績情況,以九年(1)班學生的體育測試成績?yōu)闃颖?,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)(1)寫出D級學生的人數(shù)占全班總?cè)藬?shù)的百分比為,C級學生所在的扇形圓心角的度數(shù)為;(2)該班學生體育測試成績的中位數(shù)落在等級內(nèi);(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?21.(10分)如圖,拋物線經(jīng)過點A(﹣2,0),點B(0,4).(1)求這條拋物線的表達式;(2)P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點P的坐標;(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.22.(10分)已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側(cè),如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.23.(12分)解不等式組:,并把解集在數(shù)軸上表示出來.24.(14分)我省有關部門要求各中小學要把“陽光體育”寫入課表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項)”的問題,對在校學生進行了隨機抽樣調(diào)查,從而得到一組數(shù)據(jù),如圖1是根據(jù)這組數(shù)據(jù)繪制的條形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:該校對多少名學生進行了抽樣調(diào)查?本次抽樣調(diào)查中,最喜歡足球活動的有多少人?占被調(diào)查人數(shù)的百分比是多少?若該校九年級共有400名學生,圖2是根據(jù)各年級學生人數(shù)占全校學生總?cè)藬?shù)的百分比繪制的扇形統(tǒng)計圖,請你估計全校學生中最喜歡籃球活動的人數(shù)約為多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
分兩種情形討論當點P順時針旋轉(zhuǎn)時,圖象是③,當點P逆時針旋轉(zhuǎn)時,圖象是①,由此即可解決問題.【詳解】解:當點P順時針旋轉(zhuǎn)時,圖象是③,當點P逆時針旋轉(zhuǎn)時,圖象是①.故選D.2、C【解析】∵,∴.即的值在6和7之間.故選C.3、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.
y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.
y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.
y=是組合函數(shù),故此選項錯誤.故選B.4、D【解析】分析:根據(jù)一次函數(shù)的圖形與性質(zhì),由一次函數(shù)y=kx+b的系數(shù)k和b的符號,判斷所過的象限即可.詳解:∵y=ax﹣x﹣a+1(a為常數(shù)),∴y=(a-1)x-(a-1)當a-1>0時,即a>1,此時函數(shù)的圖像過一三四象限;當a-1<0時,即a<1,此時函數(shù)的圖像過一二四象限.故其函數(shù)的圖像一定過一四象限.故選D.點睛:此題主要考查了一次函數(shù)的圖像與性質(zhì),利用一次函數(shù)的圖像與性質(zhì)的關系判斷即可.一次函數(shù)y=kx+b(k≠0,k、b為常數(shù))的圖像與性質(zhì):當k>0,b>0時,圖像過一二三象限,y隨x增大而增大;當k>0,b<0時,圖像過一三四象限,y隨x增大而增大;當k<0,b>0時,圖像過一二四象限,y隨x增大而減小;當k<0,b<0,圖像過二三四象限,y隨x增大而減小.5、A【解析】
首先作輔助線:取AB的中點M,連接OM,由平行四邊形的性質(zhì)與三角形中位線的性質(zhì),即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對應邊成比例即可求得BF的值.【詳解】取AB的中點M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【點睛】此題考查了平行四邊形的性質(zhì)、相似三角形的判定與性質(zhì)等知識.解此題的關鍵是準確作出輔助線,合理應用數(shù)形結(jié)合思想解題.6、A【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.7、B【解析】
先利用待定系數(shù)法求出直線AB的解析式,再求出將直線AB向右平移1個單位長度后得到的解析式,然后將所得解析式繞著原點旋轉(zhuǎn)180°即可得到直線l.【詳解】解:設直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個單位長度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點旋轉(zhuǎn)180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達式是y=2x?2.故選:B.【點睛】本題考查了一次函數(shù)圖象平移問題,掌握解析式“左加右減”的規(guī)律以及關于原點對稱的規(guī)律是解題的關鍵.8、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關鍵點:理解相似多邊形性質(zhì).9、B【解析】
由平面圖形的折疊及正方體的展開圖解題.【詳解】A、C、D經(jīng)過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【點睛】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.10、C【解析】
根據(jù)已知三點和近似滿足函數(shù)關系y=ax2+bx+c(a≠0)可以大致畫出函數(shù)圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數(shù)據(jù)描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉(zhuǎn)角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節(jié)省燃氣.故選:C,【點睛】本題考查了二次函數(shù)的應用,二次函數(shù)的圖像性質(zhì),熟練掌握二次函數(shù)圖像對稱性質(zhì),判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.二、填空題(共7小題,每小題3分,滿分21分)11、6【解析】
作DE⊥AB,交BA的延長線于E,作CF⊥AB,可得DE=CF,且AC=AD,可證Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根據(jù)tan∠BAC=∠DAE=DEAE=33【詳解】如圖:作DE⊥AB,交BA的延長線于E,作CF⊥AB,∵AB∥CD,DE⊥AB⊥,CF⊥AB∴CF=DE,且AC=AD∴Rt△ADE≌Rt△AFC∴AE=AF,∠DAE=∠BAC∵tan∠BAC=33∴tan∠DAE=33∴設AE=a,DE=33a在Rt△BDE中,BD2=DE2+BE2∴52=(4+a)2+27a2解得a1=1,a2=-97∴AE=1=AF,DE=33=CF∴BF=AB-AF=3在Rt△BFC中,BC=BF2【點睛】本題是解直角三角形問題,恰當?shù)貥嫿ㄝo助線是本題的關鍵,利用三角形全等證明邊相等,并借助同角的三角函數(shù)值求線段的長,與勾股定理相結(jié)合,依次求出各邊的長即可.12、①③.【解析】
根據(jù)圖表求出函數(shù)對稱軸,再根據(jù)圖表信息和二次函數(shù)性質(zhì)逐一判斷即可.【詳解】由二次函數(shù)y=ax2+bx+c(a≠0),y與x的部分對應值可知:該函數(shù)圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結(jié)論正確;②b2﹣4ac=0,結(jié)論錯誤,應該是b2﹣4ac>0;③關于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結(jié)論正確;④m=﹣3,結(jié)論錯誤,其中,正確的有.①③故答案為:①③【點睛】本題考查了二次函數(shù)的圖像,結(jié)合圖表信息是解題的關鍵.13、【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【詳解】畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.【點睛】本題主要考查了求隨機事件概率的方法,解本題的要點在于根據(jù)題意畫出樹狀圖,從而求出答案.14、【解析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.15、32或42【解析】
根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【點睛】本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進行計算,是解題的關鍵.16、8【解析】試題分析:過B點作于點,與交于點,根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點作于點,與交于點,設AF=x,,,,(負值舍去).故BD+DE的值是8故答案為8考點:軸對稱-最短路線問題.17、a<2且a≠1.【解析】
利用一元二次方程根的判別式列不等式,解不等式求出a的取值范圍.【詳解】試題解析:∵關于x的一元二次方程(a-1)x2-2x+l=0有兩個不相等的實數(shù)根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解這個不等式得,a<2,又∵二次項系數(shù)是(a-1),∴a≠1.故a的取值范圍是a<2且a≠1.【點睛】本題考查的是一元二次方程根的判別式,根據(jù)方程有兩不等的實數(shù)根,得到判別式大于零,求出a的取值范圍,同時方程是一元二次方程,二次項系數(shù)不為零.三、解答題(共7小題,滿分69分)18、(1)9,9;(2)乙;(3)1680棵;【解析】
(1)根據(jù)中位數(shù)定義:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)可得答案;(2)根據(jù)樣本要具有代表性可得乙同學抽取的樣本比較有代表性;(3)利用樣本估計總體的方法計算即可.【詳解】(1)表1中30位同學植樹情況的中位數(shù)是9棵,表2中的眾數(shù)是9棵;故答案為:9,9;(2)乙同學所抽取的樣本能更好反映此次植樹活動情況;故答案為:乙;(3)由題意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活動200位同學一共植樹1680棵.【點睛】本題考查了抽樣調(diào)查,以及中位數(shù),解題的關鍵是掌握中位數(shù)定義及抽樣調(diào)查抽取的樣本要具有代表性.19、(1),;(2)證明見解析.【解析】試題分析:(1)根據(jù)一元二次方程根與系數(shù)的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數(shù)根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.考點:1.一元二次方程根與系數(shù)的關系;2.一元二次方程根根的判別式;3.配方法的應用.20、(1)4%;(2)72°;(3)380人【解析】
(1)根據(jù)A級人數(shù)及百分數(shù)計算九年級(1)班學生人數(shù),用總?cè)藬?shù)減A、B、D級人數(shù),得C級人數(shù),再用C級人數(shù)÷總?cè)藬?shù)×360°,得C等級所在的扇形圓心角的度數(shù);(2)將人數(shù)按級排列,可得該班學生體育測試成績的中位數(shù);(3)用(A級百分數(shù)+B級百分數(shù))×1900,得這次考試中獲得A級和B級的九年級學生共有的人數(shù);(4)根據(jù)各等級人數(shù)多少,設計合格的等級,使大多數(shù)人能合格.【詳解】解:(1)九年級(1)班學生人數(shù)為13÷26%=50人,C級人數(shù)為50-13-25-2=10人,C等級所在的扇形圓心角的度數(shù)為10÷50×360°=72°,故答案為72°;(2)共50人,其中A級人數(shù)13人,B級人數(shù)25人,故該班學生體育測試成績的中位數(shù)落在B等級內(nèi),故答案為B;(3)估計這次考試中獲得A級和B級的九年級學生共有(26%+25÷50)×1900=1444人;(4)建議:把到達A級和B級的學生定為合格,(答案不唯一).21、(1);(2)P(1,);(3)3或5.【解析】
(1)將點A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標.(3)新拋物線的表達式為,由題意可得DE=2,過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點D在y軸的正半軸上和在y軸的負半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經(jīng)過點A(﹣2,0),點B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設新拋物線的表達式為則,,DE=2過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點D在y軸的正半軸上,則,∴,∴,∴m=3,點D在y軸的負半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學會靈活運用是關鍵.22、(1)詳見解析;(2)∠BDE=20°.【解析】
(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質(zhì)可得∠F=∠PBC;再利用同角的補角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結(jié)論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得BC=DH=1,在Rt△ABC中,用銳角三角函數(shù)求出∠ACB=60°,進而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據(jù)三角形外角的性質(zhì)可得∠OAD=∠DOC=20°,最后根據(jù)圓周角定理及平行線的性質(zhì)即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內(nèi)接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 犬皮膚病診治
- 膽囊切除手術后的飲食與生活注意
- 麥子課件教案教學課件
- 匆匆的 課件教學課件
- 采購小組長述職報告
- 高三化學一輪復習 第一章 第1講 考點三 分散系 膠體 課件
- 4.1.1原電池的工作原理上學期人教版(2019)選擇性必修1
- 腕手關節(jié)僵硬的康復治療
- 不玩危險物品教案反思
- 甲狀腺核磁共振成像結(jié)果
- 建筑裝飾的室內(nèi)裝修工藝與施工技術考核試卷
- 交通運輸行業(yè)火災安全預案
- 電氣工程施工應急預案
- 廠中廠承租方對出租方日常安全檢查記錄表
- DB34∕T 4010-2021 水利工程外觀質(zhì)量評定規(guī)程
- 完整2024年國有企業(yè)管理人員處分條例專題課件
- 安全生產(chǎn)治本攻堅三年行動實施方案(2024-2026年) - 副本
- DL5009.3-2013 電力建設安全工作規(guī)程 第3部分:變電站
- GB/T 32066-2024煤基費托合成液體石蠟
- GB/T 97.2-2002平墊圈倒角型A級
- 六年級上冊美術課件-第1課 建筑藝術的美 ▏人美版 (共20張PPT)
評論
0/150
提交評論