2021-2022學年四川省部分地區(qū)中考數學最后沖刺濃縮卷含解析_第1頁
2021-2022學年四川省部分地區(qū)中考數學最后沖刺濃縮卷含解析_第2頁
2021-2022學年四川省部分地區(qū)中考數學最后沖刺濃縮卷含解析_第3頁
2021-2022學年四川省部分地區(qū)中考數學最后沖刺濃縮卷含解析_第4頁
2021-2022學年四川省部分地區(qū)中考數學最后沖刺濃縮卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年四川省部分地區(qū)中考數學最后沖刺濃縮精華卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.tan45°的值等于()A. B. C. D.12.如圖,點A所表示的數的絕對值是()A.3 B.﹣3 C. D.3.關于x的方程3x+2a=x﹣5的解是負數,則a的取值范圍是()A.a< B.a> C.a<﹣ D.a>﹣4.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°5.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm26.a≠0,函數y=與y=﹣ax2+a在同一直角坐標系中的大致圖象可能是()A. B.C. D.7.已知關于x的不等式3x﹣m+1>0的最小整數解為2,則實數m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤78.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個9.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小正方體的個數,則該幾何體的左視圖是()A. B.C. D.10.如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.二、填空題(共7小題,每小題3分,滿分21分)11.若一個反比例函數的圖象經過點A(m,m)和B(2m,-1),則這個反比例函數的表達式為______12.在一個不透明的盒子中裝有8個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,它是白球的概率為,則黃球的個數為______.13.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.14.在△ABC中,∠C=90°,若tanA=,則sinB=______.15.關于x的方程ax=x+2(a1)的解是________.16.因式分解:_______________________.17.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點A的切線交BD延長線于點C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖有A、B兩個大小均勻的轉盤,其中A轉盤被分成3等份,B轉盤被分成4等份,并在每一份內標上數字.小明和小紅同時各轉動其中一個轉盤,轉盤停止后(當指針指在邊界線時視為無效,重轉),若將A轉盤指針指向的數字記作一次函數表達式中的k,將B轉盤指針指向的數字記作一次函數表達式中的b.請用列表或畫樹狀圖的方法寫出所有的可能;求一次函數y=kx+b的圖象經過一、二、四象限的概率.19.(5分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內,求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.20.(8分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統(tǒng)計圖.類別頻數(人數)頻率小說0.5戲劇4散文100.25其他6合計1根據圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.21.(10分)中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.請你根據統(tǒng)計圖解答下列問題:參加比賽的學生共有____名;在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.22.(10分)央視熱播節(jié)目“朗讀者”激發(fā)了學生的閱讀興趣,某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據調查結果繪制了統(tǒng)計圖(未完成),請根據圖中信息,解答下列問題:此次共調查了名學生;將條形統(tǒng)計圖1補充完整;圖2中“小說類”所在扇形的圓心角為度;若該校共有學生2000人,估計該校喜歡“社科類”書籍的學生人數.23.(12分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.24.(14分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結果保留根號和π)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據特殊角三角函數值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.2、A【解析】

根據負數的絕對值是其相反數解答即可.【詳解】|-3|=3,故選A.【點睛】此題考查絕對值問題,關鍵是根據負數的絕對值是其相反數解答.3、D【解析】

先解方程求出x,再根據解是負數得到關于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因為方程的解為負數,所以<0,解得:a>﹣.【點睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負數時,不等號方向要改變.4、A【解析】分析:依據AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內角和定理:三角形內角和為180°.解決問題的關鍵是三角形外角性質以及角平分線的定義的運用.5、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C6、D【解析】

分a>0和a<0兩種情況分類討論即可確定正確的選項【詳解】當a>0時,函數y=的圖象位于一、三象限,y=﹣ax2+a的開口向下,交y軸的正半軸,沒有符合的選項,當a<0時,函數y=的圖象位于二、四象限,y=﹣ax2+a的開口向上,交y軸的負半軸,D選項符合;故選D.【點睛】本題考查了反比例函數的圖象及二次函數的圖象的知識,解題的關鍵是根據比例系數的符號確定其圖象的位置,難度不大.7、A【解析】

先解出不等式,然后根據最小整數解為2得出關于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關鍵.8、D【解析】試題分析:根據等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當AB當底時,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當讓AB當腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關鍵是要分情況而定,所以學生一定要思維嚴密,不可遺漏.9、D【解析】根據俯視圖中每列正方形的個數,再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:

.故選D.10、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數圖象上點的坐標特征;3.勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】【分析】根據反比例函數圖象上點的橫、縱坐標之積不變可得關于m的方程,解方程即可求得m的值,再由待定系數法即可求得反比例函數的解析式.【詳解】設反比例函數解析式為y=,由題意得:m2=2m×(-1),解得:m=-2或m=0(不符題意,舍去),所以點A(-2,-2),點B(-4,1),所以k=4,所以反比例函數解析式為:y=,故答案為y=.【點睛】本題考查了反比例函數,熟知反比例函數圖象上點的橫、縱坐標之積等于比例系數k是解題的關鍵.12、1【解析】首先設黃球的個數為x個,然后根據概率公式列方程即可求得答案.解:設黃球的個數為x個,根據題意得:=2/3解得:x=1.∴黃球的個數為1.13、【解析】根據弧長公式可得:=,故答案為.14、【解析】分析:直接根據題意表示出三角形的各邊,進而利用銳角三角函數關系得出答案.詳解:如圖所示:∵∠C=90°,tanA=,∴設BC=x,則AC=2x,故AB=x,則sinB=.故答案為:.點睛:此題主要考查了銳角三角函數關系,正確表示各邊長是解題關鍵.15、【解析】分析:依據等式的基本性質依次移項、合并同類項、系數化為1即可得出答案.詳解:移項,得:ax﹣x=1,合并同類項,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質及解一元一次方程的基本步驟是解題的關鍵.16、【解析】

先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.17、【解析】

連接OA,所以∠OAC=90°,因為AB=AC,所以∠B=∠C,根據圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點睛】本題主要考查了圓周角定理,角的轉換,以及在直角三角形中的三角函數的運用,解本題的要點在于求出OA的值,從而利用直角三角形的三角函數的運用求出答案.三、解答題(共7小題,滿分69分)18、(1)答案見解析;(2).【解析】

(1)k可能的取值為-1、-2、-3,b可能的取值為-1、-2、3、4,所以將所有等可能出現的情況用列表方式表示出來即可.(2)判斷出一次函數y=kx+b經過一、二、四象限時k、b的正負,在列表中找出滿足條件的情況,利用概率的基本概念即可求出一次函數y=kx+b經過一、二、四象限的概率.【詳解】解:(1)列表如下:所有等可能的情況有12種;(2)一次函數y=kx+b的圖象經過一、二、四象限時,k<0,b>0,情況有4種,則P==.19、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯(lián)立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的頂點坐標為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內,求t的取值范圍.(Ⅲ)直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G,由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點坐標為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點坐標為(2﹣t,1),設直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當點E在直線AC上時,﹣2(2﹣t)+1=1,解得:t=.當點E在直線AD上時,(2﹣t)+2=1,解得:t=5,∴當點E在△DAC內時,<t<5;(III)如圖,直線AB與y軸交于點F,連接CF,過點P作PM⊥AB于點M,PN⊥x軸于點N,交DB于點G.由直線y=x+2與x軸交于點D,與y軸交于點F,得D(﹣2,0),F(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點G在直線y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點P在點G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在拋物線y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.∵﹣2<m<1,∴m=不合題意,舍去,∴m=,∴n=m+4=.點睛:本題是二次函數綜合題,涉及待定系數法,解方程,勾股定理,三角形的面積公式,綜合程度較高,需要學生綜合運用所學知識.20、(1)41(2)15%(3)【解析】

(1)用散文的頻數除以其頻率即可求得樣本總數;(2)根據其他類的頻數和總人數求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數,找出恰好是丙與乙的情況,即可確定出所求概率.【詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.21、(1)20;(2)40,1;(3).【解析】試題分析:(1)根據等級為A的人數除以所占的百分比求出總人數;(2)根據D級的人數求得D等級扇形圓心角的度數和m的值;(3)列表得出所有等可能的情況數,找出一男一女的情況數,即可求出所求的概率.試題解析:解:(1)根據題意得:3÷15%=20(人),故答案為20;(2)C級所占的百分比為×100%=40%,表示“D等級”的扇形的圓心角為×360°=1°;故答案為40、1.(3)列表如下:所有等可能的結果有6種,其中恰好是一名男生和一名女生的情況有4種,則P恰好是一名男生和一名女生==.22、(1)200;(2)見解析;(3)126°;(4)240人.【解析】

(1)根據文史類的人數以及文史類所占的百分比即可求出總人數(2)根據總人數以及生活類的百分比即可求出生活類的人數以及小說類的人數;(3)根據小說類的百分比即可求出圓心角的度數;(4)利用樣本中喜歡社科類書籍的百分比來估計總體中的百分比,從而求出喜歡社科類書籍的學生人數【詳解】(1)∵喜歡文史類的人數為76人,占總人數的38%,∴此次調查的總人數為:76÷38%=200人,故答案為200;(2)∵喜歡生活類書籍的人數占總人數的15%,∴喜歡生活類書籍的人數為:200×15%=30人,∴喜歡小說類書籍的人數為:200﹣24﹣76﹣30=70人,如圖所示:(3)∵喜歡社科類書籍的人數為:24人,∴喜歡社科類書籍的人數占了總人數的百分比為:×100%=12%,∴喜歡小說類書籍的人數占了總分數的百分比為:100%﹣15%﹣38%﹣12%=35%,∴小說類所在圓心角為:360°×35%=126°;(4)由樣本數據可知喜歡“社科類”書籍的學生人數占了總人數的12%,∴該校共有學生2000人,估計該校喜歡“社科類”書籍的學生人數:2000×12%=240人.【點睛】此題考查扇形統(tǒng)計圖和條形統(tǒng)計圖,看懂圖中數據是解題關鍵23、(1)證明見解析;(2)【解析】

(1)連接OC,如圖,利用切線的性質得CO⊥CD,則AD∥CO,所以∠DAC=∠ACO,加上∠ACO=∠CAO,從而得到∠DAC=∠CAO;(2)設⊙O半徑為r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用銳角三角函數的定義計算出∠COE=60°,然后根據扇形的面積公式,利用S陰影=S△COE﹣S扇形COB進行計算即可.【詳解】解:(1)連接OC,如圖,∵CD與⊙O相切于點E,∴C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論