2021-2022學年浙江省樂清市育英寄宿校中考試題猜想數學試卷含解析_第1頁
2021-2022學年浙江省樂清市育英寄宿校中考試題猜想數學試卷含解析_第2頁
2021-2022學年浙江省樂清市育英寄宿校中考試題猜想數學試卷含解析_第3頁
2021-2022學年浙江省樂清市育英寄宿校中考試題猜想數學試卷含解析_第4頁
2021-2022學年浙江省樂清市育英寄宿校中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年浙江省樂清市育英寄宿校中考試題猜想數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+12.計算的結果是(

)A. B. C. D.23.某美術社團為練習素描,他們第一次用120元買了若干本相同的畫冊,第二次用240元在同一家商店買與上一次相同的畫冊,這次商家每本優(yōu)惠4元,結果比上次多買了20本.求第一次買了多少本畫冊?設第一次買了x本畫冊,列方程正確的是()A. B.C. D.4.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點E,現把△BCE繞點B逆時針旋轉,記旋轉后的△BCE為△BC′E′.當線段BE′和線段BC′都與線段AD相交時,設交點分別為F,G.若△BFD為等腰三角形,則線段DG長為()A. B. C. D.5.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.6.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值27.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為A.40海里 B.60海里 C.70海里 D.80海里8.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°9.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣110.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x二、填空題(本大題共6個小題,每小題3分,共18分)11.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.12.甲、乙、丙3名學生隨機排成一排拍照,其中甲排在中間的概率是_____.13.在△ABC中,∠C=30°,∠A﹣∠B=30°,則∠A=_____.14.將一個含45°角的三角板,如圖擺放在平面直角坐標系中,將其繞點順時針旋轉75°,點的對應點恰好落在軸上,若點的坐標為,則點的坐標為____________.15.據統計,今年無錫黿頭渚“櫻花節(jié)”活動期間入園賞櫻人數約803萬人次,用科學記數法可表示為_____人次.16.如圖,線段AB=10,點P在線段AB上,在AB的同側分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.三、解答題(共8題,共72分)17.(8分)已知關于x的一元二次方程有實數根.(1)求k的取值范圍;(2)若k為正整數,且方程有兩個非零的整數根,求k的取值.18.(8分)如圖,建筑物BC上有一旗桿AB,從與BC相距40m的D處觀測旗桿頂部A的仰角為50°,觀測旗桿底部B的仰角為45°,求旗桿AB的高度.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.(8分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;現甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?20.(8分)已知,平面直角坐標系中的點A(a,1),t=ab﹣a2﹣b2(a,b是實數)(1)若關于x的反比例函數y=過點A,求t的取值范圍.(2)若關于x的一次函數y=bx過點A,求t的取值范圍.(3)若關于x的二次函數y=x2+bx+b2過點A,求t的取值范圍.21.(8分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.22.(10分)一只不透明的袋子中裝有4個質地、大小均相同的小球,這些小球分別標有3,4,5,x,甲,乙兩人每次同時從袋中各隨機取出1個小球,并計算2個小球上的數字之和.記錄后將小球放回袋中攪勻,進行重復試驗,試驗數據如下表:摸球總次數1020306090120180240330450“和為8”出現的頻數210132430375882110150“和為8”出現的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗繼續(xù)進行下去,根據上表提供的數據,出現和為8的頻率將穩(wěn)定在它的概率附近,估計出現和為8的概率是________;如果摸出的2個小球上數字之和為9的概率是,那么x的值可以為7嗎?為什么?23.(12分)在抗洪搶險救災中,某地糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉移到沒有受洪水威脅的A,B兩倉庫,已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為60噸,B庫的容量為120噸,從甲、乙兩庫到A、B兩庫的路程和運費如表(表中“元/噸?千米”表示每噸糧食運送1千米所需人民幣)路程(千米)運費(元/噸?千米)甲庫乙?guī)旒讕煲規(guī)霢庫20151212B庫2520108若從甲庫運往A庫糧食x噸,(1)填空(用含x的代數式表示):①從甲庫運往B庫糧食噸;②從乙?guī)爝\往A庫糧食噸;③從乙?guī)爝\往B庫糧食噸;(2)寫出將甲、乙兩庫糧食運往A、B兩庫的總運費y(元)與x(噸)的函數關系式,并求出當從甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?24.如圖,某次中俄“海上聯合”反潛演習中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機B側得潛艇C的俯角為68°.試根據以上數據求出潛艇C離開海平面的下潛深度.(結果保留整數.參考數據:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.2、C【解析】

化簡二次根式,并進行二次根式的乘法運算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點睛】本題主要考查二次根式的化簡以及二次根式的混合運算.3、A【解析】分析:由設第一次買了x本資料,則設第二次買了(x+20)本資料,由等量關系:第二次比第一次每本優(yōu)惠4元,即可得到方程.詳解:設他上月買了x本筆記本,則這次買了(x+20)本,根據題意得:.故選A.點睛:本題考查了分式方程的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程解答即可.4、A【解析】

先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【點睛】本題考查了旋轉的性質,矩形的性質,等腰三角形的性質,勾股定理,平行線分線段成比例定理,準確作出輔助線是解題關鍵.5、B【解析】

根據垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.6、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,

由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.7、D【解析】分析:依題意,知MN=40海里/小時×2小時=80海里,∵根據方向角的意義和平行的性質,∠M=70°,∠N=40°,∴根據三角形內角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故選D.8、A【解析】

先根據∠CDE=40°,得出∠CED=50°,再根據DE∥AF,即可得到∠CAF=50°,最后根據∠BAC=60°,即可得出∠BAF的大小.【詳解】由圖可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點睛】本題考查了平行線的性質,熟練掌握這一點是解題的關鍵.9、B【解析】

∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.10、D【解析】

本題主要考查二次函數的解析式【詳解】解:根據二次函數的解析式形式可得,設頂點坐標為(h,k),則二次函數的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數的頂點式,根據頂點的平移可得到二次函數平移后的解析式.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】

根據“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質.12、【解析】列舉出所有情況,看甲排在中間的情況占所有情況的多少即為所求的概率.

根據題意,列出甲、乙、丙三個同學排成一排拍照的所有可能:

甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6種情況,

只有2種甲在中間,所以甲排在中間的概率是=.

故答案為;點睛:本題主要考查了列舉法求概率,用到的知識點為:概率等于所求情況數與總情況數之比,關鍵是列舉出同等可能的所有情況.13、90°.【解析】

根據三角形內角和得到∠A+∠B+∠C=180°,而∠C=30°,則可計算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把兩式相加消去∠B即可求得∠A的度數.【詳解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案為:90°.【點睛】本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數.①直接根據兩已知角求第三個角;②依據三角形中角的關系,用代數方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.14、【解析】

先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標.【詳解】解:∵∠ACB=45°,∠BCB′=75°,

∴∠ACB′=120°,

∴∠ACO=60°,

∴∠OAC=30°,

∴AC=2OC,

∵點C的坐標為(1,0),

∴OC=1,

∴AC=2OC=2,

∵△ABC是等腰直角三角形,∴B′點的坐標為【點睛】此題主要考查了旋轉的性質及坐標與圖形變換,同時也利用了直角三角形性質,首先利用直角三角形的性質得到有關線段的長度,即可解決問題.15、8.03×106【解析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.803萬=.16、2【解析】

設MN=y,PC=x,根據正方形的性質和勾股定理列出y1關于x的二次函數關系式,求二次函數的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質、勾股定理、二次函數的最值.熟練掌握勾股定理和二次函數的最值是解決問題的關鍵.三、解答題(共8題,共72分)17、(1);(2)k=1【解析】

(1)根據一元二次方程2x2+4x+k﹣1=0有實數根,可得出△≥0,解不等式即可得出結論;(2)分別把k的正整數值代入方程2x2+4x+k﹣1=0,根據解方程的結果進行分析解答.【詳解】(1)由題意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k為正整數,∴k=1,2,1.當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x=0,解得:x=0或x=-2,有一個根為零;當k=2時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+1=0,解得:x=,無整數根;當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+2=0,解得:x1=x2=-1,有兩個非零的整數根.綜上所述:k=1.【點睛】本題考查了一元二次方程根的判別式:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(1)△<0?方程沒有實數根.18、7.6m.【解析】

利用CD及正切函數的定義求得BC,AC長,把這兩條線段相減即為AB長【詳解】解:由題意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40m.∵在Rt△BDC中,tan∠BDC=BCCD∴BC=CD=40m.∵在Rt△ADC中,tan∠ADC=ACCD∴tan50∴AB≈7.6(m).答:旗桿AB的高度約為7.6m.【點睛】此題主要考查了解直角三角形的應用,正確應用銳角三角函數關系是解題關鍵.19、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結果數,再找出甲至少勝一局的結果數,然后根據概率公式求.詳解:(1)甲隊最終獲勝的概率是;(2)畫樹狀圖為:共有8種等可能的結果數,其中甲至少勝一局的結果數為7,所以甲隊最終獲勝的概率=.點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.20、(1)t≤﹣;(2)t≤3;(3)t≤1.【解析】

(1)把點A的坐標代入反比例函數解析式求得a的值;然后利用二次函數的最值的求法得到t的取值范圍.

(2)把點A的坐標代入一次函數解析式求得a=;然后利用二次函數的最值的求法得到t的取值范圍.

(3)把點A的坐標代入二次函數解析式求得以a2+b2=1-ab;然后利用非負數的性質得到t的取值范圍.【詳解】解:(1)把A(a,1)代入y=得到:1=,解得a=1,則t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣)2﹣.因為拋物線t=﹣(b﹣)2﹣的開口方向向下,且頂點坐標是(,﹣),所以t的取值范圍為:t≤﹣;(2)把A(a,1)代入y=bx得到:1=ab,所以a=,則t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+)2+3≤3,故t的取值范圍為:t≤3;(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,所以ab=1﹣(a2+b2),則t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,故t的取值范圍為:t≤1.【點睛】本題考查了反比例函數、一次函數以及二次函數的性質.代入求值時,注意配方法的應用.21、(1);(2)1.【解析】

(1)根據相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比進行計算即可;(2)根據EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根據S=x(12﹣x)=﹣(x﹣6)2+1,可得當x=6時,S有最大值為1.【詳解】解:(1)∵△AEF∽△ABC,∴,∵邊BC長為18,高AD長為12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.當x=6時,S有最大值為1.【點睛】本題主要考查了相似三角形的判定與性質的綜合應用,解題時注意:確定一個二次函數的最值,首先看自變量的取值范圍,當自變量取全體實數時,其最值為拋物線頂點坐標的縱坐標.22、(1)出現“和為8”的概率是0.33;(2)x的值不能為7.【解析】

(1)利用頻率估計概率結合表格中數據得出答案即可;(2)假設x=7,根據題意先列出樹狀圖,得出和為9的概率,再與進行比較,即可得出答案.【詳解】解:(1)隨著試驗次數不斷增加,出現“和為8”的頻率逐漸穩(wěn)定在0.33,故出現“和為8”的概率是0.33.(2)x的值不能為7.理由:假設x=7,則P(和為9)=≠,所以x的值不能為7.【點睛】此題主要考查了利用頻率估計概率以及樹狀圖法求概率,正確畫出樹狀圖是解題關鍵.23、(1)①(100﹣x);②(1﹣x);③(20+x);(2)從甲庫運往A庫1噸糧食,從甲庫運往B庫40噸糧食,從乙?guī)爝\往B庫80噸糧食時,總運費最省,最省的總運費是2元.【解析】分析:(Ⅰ)根據題意解答即可;(Ⅱ)弄清調動方向,再依據路程和運費列出y(元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論