版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省德州市陵城一中2024-2025學(xué)年高三第6次月考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.2.函數(shù)的大致圖像為()A. B.C. D.3.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點(diǎn),則異面直線與所成角的余弦值為A.0 B. C. D.14.某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)5.雙曲線的漸近線方程為()A. B.C. D.6.把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實(shí)數(shù)的最小值是()A. B. C. D.7.一物體作變速直線運(yùn)動(dòng),其曲線如圖所示,則該物體在間的運(yùn)動(dòng)路程為()m.A.1 B. C. D.28.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米9.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.10.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.11.記個(gè)兩兩無(wú)交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間12.的展開(kāi)式中的一次項(xiàng)系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與圓心為的圓相交于兩點(diǎn),且,則實(shí)數(shù)的值為_(kāi)________.14.已知點(diǎn)P是直線y=x+1上的動(dòng)點(diǎn),點(diǎn)Q是拋物線y=x2上的動(dòng)點(diǎn).設(shè)點(diǎn)M為線段PQ的中點(diǎn),O為原點(diǎn),則15.已知非零向量,滿足,且,則與的夾角為_(kāi)___________.16.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,已知圓,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線平分圓M的周長(zhǎng).(1)求圓M的半徑和圓M的極坐標(biāo)方程;(2)過(guò)原點(diǎn)作兩條互相垂直的直線,其中與圓M交于O,A兩點(diǎn),與圓M交于O,B兩點(diǎn),求面積的最大值.18.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開(kāi)展愛(ài)國(guó)衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開(kāi)展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過(guò)問(wèn)卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過(guò)數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問(wèn)卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫(xiě)出方差,,,,,的大小關(guān)系.19.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長(zhǎng)均相等.(1)求證:平面;(2)求證:平面平面.20.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點(diǎn),平面,,為線段上一點(diǎn)(不與端點(diǎn)重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實(shí)數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.21.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過(guò)可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.2.D【解析】
通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.3.B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.4.D【解析】
根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.本題考查了折線圖,意在考查學(xué)生的理解能力.5.A【解析】
將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡(jiǎn)整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用.6.A【解析】
先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對(duì)稱性可求實(shí)數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)解析式為,故.令,,解得,.因?yàn)闉榕己瘮?shù),故直線為其圖象的對(duì)稱軸,令,,故,,因?yàn)?,故,?dāng)時(shí),.故選:A.本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質(zhì),注意平移變換是對(duì)自變量做加減,比如把的圖象向右平移1個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式為,另外,如果為正弦型函數(shù)圖象的對(duì)稱軸,則有,本題屬于中檔題.7.C【解析】
由圖像用分段函數(shù)表示,該物體在間的運(yùn)動(dòng)路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線運(yùn)動(dòng)的路程公式,可得.所以物體在間的運(yùn)動(dòng)路程是.故選:C本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8.B【解析】
由于實(shí)際問(wèn)題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.9.A【解析】
是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,∴的最小值是.故選:A.本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱性.函數(shù)的零點(diǎn)就是其圖象對(duì)稱中心的橫坐標(biāo).10.B【解析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.11.D【解析】
可判斷函數(shù)為奇函數(shù),先討論當(dāng)且時(shí)的導(dǎo)數(shù)情況,再畫(huà)出函數(shù)大致圖形,將所求區(qū)間端點(diǎn)值分別看作對(duì)應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當(dāng)且時(shí),.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D本題考查由函數(shù)的奇偶性,單調(diào)性求解對(duì)應(yīng)自變量范圍,導(dǎo)數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題12.B【解析】
根據(jù)多項(xiàng)式乘法法則得出的一次項(xiàng)系數(shù),然后由等差數(shù)列的前項(xiàng)和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開(kāi)式中的一次項(xiàng)系數(shù)為.故選:B.本題考查二項(xiàng)式定理的應(yīng)用,應(yīng)用多項(xiàng)式乘法法則可得展開(kāi)式中某項(xiàng)系數(shù).同時(shí)本題考查了組合數(shù)公式.二、填空題:本題共4小題,每小題5分,共20分。13.0或6【解析】
計(jì)算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力。14.3【解析】
過(guò)點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當(dāng)直線相切時(shí)距離最小,計(jì)算得到答案.【詳解】如圖所示:過(guò)點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點(diǎn)M為線段PQ的中點(diǎn),故M在直線y=x+38時(shí)距離最小,故故答案為:32本題考查了拋物線中距離的最值問(wèn)題,轉(zhuǎn)化為切線問(wèn)題是解題的關(guān)鍵.15.(或?qū)懗桑窘馕觥?/p>
設(shè)與的夾角為,通過(guò),可得,化簡(jiǎn)整理可求出,從而得到答案.【詳解】設(shè)與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.本題主要考查向量的數(shù)量積運(yùn)算,向量垂直轉(zhuǎn)化為數(shù)量積為0是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,分析能力及計(jì)算能力.16.【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),(2)【解析】
先求出,再求圓的半徑和極坐標(biāo)方程;(2)設(shè)求出,,再求出得解.【詳解】(1)將化成直角坐標(biāo)方程,得則,故,則圓,即,所以圓M的半徑為.將圓M的方程化成極坐標(biāo)方程,得.即圓M的極坐標(biāo)方程為.(2)設(shè),則,用代替.可得,本題主要考查直角坐標(biāo)和極坐標(biāo)的互化,考查極徑的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18.(1)(2)(3)【解析】
(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫(xiě)出即可.【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,有效問(wèn)卷共有(份,其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“則.所以該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣至少具備2個(gè)良好習(xí)慣的概率為0.766.(3).本題考查了古典概型求概率,獨(dú)立性事件,互斥性事件求概率等,考查運(yùn)算能力和事件應(yīng)用能力,中檔題.19.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點(diǎn),連結(jié),在矩形中,點(diǎn)為的中點(diǎn),又,故,,又,平面,所以平面,又平面,所以平面平面.20.(1)(?。┳C明見(jiàn)解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點(diǎn),連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點(diǎn)建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(?。┳C明:連接交于點(diǎn),連接,,因?yàn)闉榫€段的中點(diǎn),所以,因?yàn)?,所以因?yàn)椤嗡运倪呅螢槠叫兴倪呅危杂忠驗(yàn)椋杂忠驗(yàn)槠矫?,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因?yàn)?,,所以以為原點(diǎn)建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因?yàn)橹本€與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點(diǎn)是否存在的判斷與求法,考查空間中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 項(xiàng)目施工合同
- 全屋定制安裝合同范本
- 采購(gòu)及服務(wù)合同
- 一建合同管理的程序
- 廢舊買(mǎi)賣(mài)合同范本
- 幼兒園場(chǎng)地租賃合同
- 鍍鋅行業(yè)安全知識(shí)競(jìng)賽學(xué)習(xí)資料
- 重大安全風(fēng)險(xiǎn)管控措施落實(shí)情況檢查和事故隱患排查工作方案
- 基于能量選擇的空間電磁防護(hù)結(jié)構(gòu)設(shè)計(jì)與研究
- 2025年??趶臉I(yè)資格證應(yīng)用能力考些啥
- 中小學(xué)校食品安全與膳食經(jīng)費(fèi)管理工作指引
- 電商平臺(tái)客服人員績(jī)效考核手冊(cè)
- 04S519小型排水構(gòu)筑物(含隔油池)圖集
- YB∕T 4146-2016 高碳鉻軸承鋼無(wú)縫鋼管
- 多圖中華民族共同體概論課件第十三講先鋒隊(duì)與中華民族獨(dú)立解放(1919-1949)根據(jù)高等教育出版社教材制作
- 高考英語(yǔ)單詞3500(亂序版)
- 《社區(qū)康復(fù)》課件-第五章 脊髓損傷患者的社區(qū)康復(fù)實(shí)踐
- 北方、南方戲劇圈的雜劇文檔
- 燈謎大全及答案1000個(gè)
- 洗衣機(jī)事業(yè)部精益降本總結(jié)及規(guī)劃 -美的集團(tuán)制造年會(huì)
評(píng)論
0/150
提交評(píng)論