2024年九年級數(shù)學(xué)下冊28銳角三角函數(shù)小專題七構(gòu)造基本圖形解直角三角形的應(yīng)用題檢測題含解析新版新人教版_第1頁
2024年九年級數(shù)學(xué)下冊28銳角三角函數(shù)小專題七構(gòu)造基本圖形解直角三角形的應(yīng)用題檢測題含解析新版新人教版_第2頁
2024年九年級數(shù)學(xué)下冊28銳角三角函數(shù)小專題七構(gòu)造基本圖形解直角三角形的應(yīng)用題檢測題含解析新版新人教版_第3頁
2024年九年級數(shù)學(xué)下冊28銳角三角函數(shù)小專題七構(gòu)造基本圖形解直角三角形的應(yīng)用題檢測題含解析新版新人教版_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

小專題(七)構(gòu)造基本圖形解直角三角形的應(yīng)用題類型1構(gòu)造單始終角三角形1.平放在地面上的直角三角形鐵板ABC的一部分被沙堆掩埋,其示意圖如圖所示.量得∠A為54°,∠B為36°,斜邊AB的長為2.1m,BC邊上露出部分BD的長為0.9m.求鐵板BC邊被掩埋部分CD的長.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin54°≈0.81,cos54°≈0.59,tan54°≈1.38)解:由題意,得∠C=180°-∠B-∠A=180°-36°-54°=90°.在Rt△ABC中,sinA=eq\f(BC,AB),∴BC=AB·sinA=2.1×sin54°≈1.701(m),∴CD=BC-BD=1.701-0.9=0.801≈0.8(m).類型2母子三角形2.(重慶中考)如圖,小王在長江邊某眺望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡長BC=10米,則此時AB的長約為(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)(A)A.5.1米B.6.3米C.7.1米D.9.2米3.(長沙中考)為了維護國家主權(quán)和海洋權(quán)力,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理.如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,接著航行1小時到達(dá)B處,此時測得燈塔P在北偏東30°方向上.(1)求∠APB的度數(shù);(2)已知在燈塔P的四周25海里內(nèi)有暗礁,問海監(jiān)船接著向正東方向航行是否平安?解:(1)在△APB中,∠PAB=30°,∠ABP=120°,∴∠APB=180°-30°-120°=30°.(2)過點P作PH⊥AB于點H.在Rt△APH中,∠PAH=30°,AH=eq\r(3)PH.在Rt△BPH中,∠PBH=60°,BH=eq\f(\r(3),3)PH.∴AB=AH-BH=eq\f(2\r(3),3)PH=50.∴PH=25eq\r(3)>25.∴海監(jiān)船接著向正東方向航行仍舊平安.類型3背靠背三角形4.(天津中考)如圖,一艘海輪位于燈塔P的北偏東64°方向,距離燈塔120海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,求BP和BA的長.(結(jié)果取整數(shù),參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,eq\r(2)取1.414)解:過點P作PC⊥AB,垂足為C.由題意可知,∠A=64°,∠B=45°,PA=120.在Rt△APC中,sinA=eq\f(PC,PA),cosA=eq\f(AC,PA),∴PC=PA·sinA=120×sin64°.AC=PA·cosA=120×cos64°.在Rt△BPC中,sinB=eq\f(PC,BP),tanB=eq\f(PC,BC),∴BP=eq\f(PC,sinB)=eq\f(120×sin64°,sin45°)≈eq\f(120×0.90,\f(\r(2),2))≈153.BC=eq\f(PC,tanB)=eq\f(PC,tan45°)=PC=120×sin64°.∴BA=BC+AC=120×sin64°+120×cos64°≈120×0.90+120×0.44≈161.答:BP的長約為153海里,BA的長約為161海里.5.(宜賓中考)如圖,某市對位于筆直馬路AC上兩個小區(qū)A,B的供水路途進行優(yōu)化改造.供水站M在筆直馬路AD上,測得供水站M在小區(qū)A的南偏東60°方向,在小區(qū)B的西南方向,小區(qū)A,B之間距離為300(eq\r(3)+1)米.求供水站M分別到小區(qū)A,B的距離.(結(jié)果可保留根號)解:作ME⊥AB,垂足為E.設(shè)ME=x米.在Rt△AME中,∠MAE=90°-60°=30°,∴AM=2ME=2x,AE=eq\f(ME,tan30°)=eq\r(3)x.在Rt△BME中,∠MBE=90°-45°=45°,∴ME=EB=x,MB=eq\r(2)x.∵AE+BE=AB=300(eq\r(3)+1),即eq\r(3)x+x=300(eq\r(3)+1),解得x=300.∴AM=2ME=2x=600,MB=eq\r(2)x=300eq\r(2).答:供水站M到小區(qū)A,B的距離分別是600米、300eq\r(2)米.6.(德州中考)如圖所示,某馬路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設(shè)在距離馬路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知∠B=30°,∠C=45°.(1)求B,C之間的距離;(保留根號)(2)假如此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):eq\r(3)≈1.7,eq\r(2)≈1,4)解:(1)過點A作AD⊥BC于點D,則AD=10m.∵在Rt△ACD中,∠C=45°,∴CD=AD=10m.在Rt△ABD中,tanB=eq\f(AD,BD),∵∠B=30°,∴eq\f(\r(3),3)=eq\f(10,BD).∴BD=10eq\r(3)m.∴BC=BD+DC=(10eq\r(3)+10)m.答:B,C之間的距離是(10eq\r(3)+10)m.(2)這輛汽車超速,理由如下:由(1)知BC=(10eq\r(3)+10)m≈27m.∴汽車速度為eq\f(27,0.9)=30(m/s)=108km/h.∵108>80,∴這輛汽車超速.類型4與梯形有關(guān)的解直角三角形7.如圖,梯形ABCD是攔水壩的橫斷面圖,斜面坡度i=1∶eq\r(3)是指坡面的鉛直高度DE與水平寬度CE的比,∠B=60°,AB=6,AD=4,求攔水壩的橫斷面ABCD的面積.(結(jié)果保留小數(shù)點后一位.參考數(shù)據(jù):eq\r(3)≈1.732,eq\r(2)≈1.414)解:過點A作AF⊥BC,垂足為點F.在Rt△ABF中,∠B=60°,AB=6,∴AF=AB·sinB=6×sin60°=3eq\r(3),BF=AB·cosB=6×cos60°=3.∵AD∥BC,AF⊥BC,DE⊥BC,∴四邊形AFED是矩形.∴DE=AF=3eq\r(3),F(xiàn)E=AD=4.在Rt△CDE中,i=eq\f(ED,EC)=eq\f(1,\r(3)),∴EC=e

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論