2022屆甘肅省定西市隴西縣中考三模數(shù)學試題含解析_第1頁
2022屆甘肅省定西市隴西縣中考三模數(shù)學試題含解析_第2頁
2022屆甘肅省定西市隴西縣中考三模數(shù)學試題含解析_第3頁
2022屆甘肅省定西市隴西縣中考三模數(shù)學試題含解析_第4頁
2022屆甘肅省定西市隴西縣中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022屆甘肅省定西市隴西縣中考三模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設動車速度為每小時x千米,則可列方程為()A. B.C. D.2.下列各數(shù)中,最小的數(shù)是()A.﹣4B.3C.0D.﹣23.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>04.已知正方形ABCD的邊長為4cm,動點P從A出發(fā),沿AD邊以1cm/s的速度運動,動點Q從B出發(fā),沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發(fā),運動到點D均停止運動,設運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數(shù)圖象大致是()A. B. C. D.5.不等式組的解集表示在數(shù)軸上正確的是()A. B. C. D.6.如果t>0,那么a+t與a的大小關系是()A.a(chǎn)+t>aB.a(chǎn)+t<aC.a(chǎn)+t≥aD.不能確定7.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內(nèi)心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.8.下列事件中必然發(fā)生的事件是()A.一個圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式C.200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù)9.的值是A.±3 B.3 C.9 D.8110.對于命題“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°二、填空題(本大題共6個小題,每小題3分,共18分)11.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.12.在一個不透明的空袋子里放入3個白球和2個紅球,每個球除顏色外完全相同,小樂從中任意摸出1個球,摸出的球是紅球,放回后充分搖勻,又從中任意摸出1個球,摸到紅球的概率是

____

.13.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.14.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.15.分解因式:___.16.已知一個多邊形的每一個內(nèi)角都等于108°,則這個多邊形的邊數(shù)是.三、解答題(共8題,共72分)17.(8分)如圖甲,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.(1)求該拋物線的解析式;(2)在該拋物線的對稱軸上是否存在點M,使以C,P,M為頂點的三角形為等腰三角形?若存在,請直接寫出所符合條件的點M的坐標;若不存在,請說明理由;(3)當0<x<3時,在拋物線上求一點E,使△CBE的面積有最大值(圖乙、丙供畫圖探究).18.(8分)如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現(xiàn)在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數(shù)據(jù):≈1.414,≈1.732)19.(8分)鮮豐水果店計劃用元/盒的進價購進一款水果禮盒以備銷售.據(jù)調(diào)查,當該種水果禮盒的售價為元/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高于多少元?在實際銷售時,由于天氣和運輸?shù)脑颍亢兴Y盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達到了元,求的值.20.(8分)先化簡代數(shù)式,再從-2,2,0三個數(shù)中選一個恰當?shù)臄?shù)作為a的值代入求值.21.(8分)如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數(shù)y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).22.(10分)在平面直角坐標系中,O為坐標原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.①在旋轉(zhuǎn)過程中,當∠BAG′=90°時,求α的大??;②在旋轉(zhuǎn)過程中,求AF′的長取最大值時,點F′的坐標及此時α的大?。ㄖ苯訉懗鼋Y(jié)果即可).23.(12分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關于x的關系式(結(jié)果保留π).24.如圖,已知是直角坐標平面上三點.將先向右平移3個單位,再向上平移3個單位,畫出平移后的圖形;以點為位似中心,位似比為2,將放大,在軸右側(cè)畫出放大后的圖形;填空:面積為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】解:設動車速度為每小時x千米,則可列方程為:﹣=.故選D.2、A【解析】

有理數(shù)大小比較的法則:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小,據(jù)此判斷即可【詳解】根據(jù)有理數(shù)比較大小的方法,可得﹣4<﹣2<0<3∴各數(shù)中,最小的數(shù)是﹣4故選:A【點睛】本題考查了有理數(shù)大小比較的方法,解題的關鍵要明確:①正數(shù)都大于0;②負數(shù)都小于0;③正數(shù)大于一切負數(shù);④兩個負數(shù),絕對值大的其值反而小3、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.4、B【解析】

根據(jù)題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當0≤x≤2時,BQ=2x當2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側(cè)時形成的不同圖形,并要根據(jù)圖形列出函數(shù)關系式.5、C【解析】

根據(jù)題意先解出的解集是,把此解集表示在數(shù)軸上要注意表示時要注意起始標記為空心圓圈,方向向右;表示時要注意方向向左,起始的標記為實心圓點,綜上所述C的表示符合這些條件.故應選C.6、A【解析】試題分析:根據(jù)不等式的基本性質(zhì)即可得到結(jié)果.t>0,∴a+t>a,故選A.考點:本題考查的是不等式的基本性質(zhì)點評:解答本題的關鍵是熟練掌握不等式的基本性質(zhì)1:不等式兩邊同時加或減去同一個整式,不等號方向不變.7、A【解析】

過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據(jù)△ABC∽△GEF,即可得到EG:EF:GF,根據(jù)斜邊的長列方程即可得到結(jié)論.【詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設EG=4k=AG,則EF=3k=CF,F(xiàn)G=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點睛】本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構(gòu)相似三角形以及構(gòu)造等腰三角形.8、C【解析】

直接利用隨機事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項錯誤;B、不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式,是隨機事件,故此選項錯誤;C、200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù),是隨機事件,故此選項錯誤;故選C.【點睛】此題主要考查了隨機事件、必然事件、不可能事件,正確把握相關定義是解題關鍵.9、C【解析】試題解析:∵∴的值是3故選C.10、D【解析】

能說明是假命題的反例就是能滿足已知條件,但不滿足結(jié)論的例子.【詳解】“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題為∠1=∠1=45°.故選:D.【點睛】考查了命題與定理的知識,理解能說明它是假命題的反例的含義是解決本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.12、【解析】【分析】袋子中一共有5個球,其中有2個紅球,用2除以5即可得從中摸出一個球是紅球的概率.【詳解】袋子中有3個白球和2個紅球,一共5個球,所以從中任意摸出一個球是紅球的概率為:,故答案為.【點睛】本題考查了概率的計算,用到的知識點為:可能性等于所求情況數(shù)與總情況數(shù)之比.13、【解析】

由矩形的性質(zhì)可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質(zhì)和折疊的性質(zhì)可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理,利用勾股定理求AF的長是本題的關鍵.14、【解析】

先畫出樹狀圖,用隨意摸出兩個球是紅球的結(jié)果個數(shù)除以所有可能的結(jié)果個數(shù)即可.【詳解】∵從中隨意摸出兩個球的所有可能的結(jié)果個數(shù)是12,隨意摸出兩個球是紅球的結(jié)果個數(shù)是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、【解析】

先提取公因式,再利用平方差公式分解因式即可.【詳解】故答案為:.【點睛】本題考查了分解因式,熟練掌握因式法、公式法、十字相乘法、分組分解法的區(qū)別,根據(jù)題目選擇合適的方法是解題的關鍵.16、1【解析】試題分析:∵多邊形的每一個內(nèi)角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數(shù)是:360÷÷72=1.三、解答題(共8題,共72分)17、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E點坐標為(,)時,△CBE的面積最大.【解析】試題分析:(1)由直線解析式可求得B、C坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由拋物線解析式可求得P點坐標及對稱軸,可設出M點坐標,表示出MC、MP和PC的長,分MC=MP、MC=PC和MP=PC三種情況,可分別得到關于M點坐標的方程,可求得M點的坐標;(3)過E作EF⊥x軸,交直線BC于點F,交x軸于點D,可設出E點坐標,表示出F點的坐標,表示出EF的長,進一步可表示出△CBE的面積,利用二次函數(shù)的性質(zhì)可求得其取得最大值時E點的坐標.試題解析:(1)∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,∴B(3,0),C(0,3),把B、C坐標代入拋物線解析式可得,解得,∴拋物線解析式為y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴拋物線對稱軸為x=2,P(2,﹣1),設M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM為等腰三角形,∴有MC=MP、MC=PC和MP=PC三種情況,①當MC=MP時,則有=|t+1|,解得t=,此時M(2,);②當MC=PC時,則有=2,解得t=﹣1(與P點重合,舍去)或t=7,此時M(2,7);③當MP=PC時,則有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此時M(2,﹣1+2)或(2,﹣1﹣2);綜上可知存在滿足條件的點M,其坐標為(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如圖,過E作EF⊥x軸,交BC于點F,交x軸于點D,設E(x,x2﹣4x+3),則F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴當x=時,△CBE的面積最大,此時E點坐標為(,),即當E點坐標為(,)時,△CBE的面積最大.考點:二次函數(shù)綜合題.18、33層.【解析】

根據(jù)含30度的直角三角形三邊的關系和等腰直角三角形的性質(zhì)得到BD和CE的長,二者的和乘以100后除以20即可確定臺階的數(shù).【詳解】解:在Rt△ABD中,BD=AB?sin45°=3m,在Rt△BEC中,EC=BC=3m,∴BD+CE=3+3,∵改造后每層臺階的高為22cm,∴改造后的臺階有(3+3)×100÷22≈33(個)答:改造后的臺階有33個.【點睛】本題考查了坡度的概念:斜坡的坡度等于斜坡的鉛直高度與對應的水平距離的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三邊的關系和等腰直角三角形的性質(zhì).19、(1)若使水果禮盒的月銷量不低于盒,每盒售價應不高于元;(2)的值為.【解析】

(1)設每盒售價應為x元,根據(jù)月銷量=980-30×超出14元的部分結(jié)合月銷量不低于800盒,即可得出關于x的一元一次不等式,解之取其最大值即可得出結(jié)論;

(2)根據(jù)總利潤=每盒利潤×銷售數(shù)量,即可得出關于m的一元二次方程,解之取其正值即可得出結(jié)論.【詳解】解:設每盒售價元.依題意得:解得:答:若使水果禮盒的月銷量不低于盒,每盒售價應不高于元依題意:令:化簡:解得:(舍),答:的值為.【點睛】考查一元二次方程的應用,一元一次不等式的應用,讀懂題目,找出題目中的等量關系或不等關系是解題的關鍵.20、,2【解析】試題分析:首先將括號里面的進行通分,然后將除法改成乘法進行分式的化簡,選擇a的值時,不能使原分式?jīng)]有意義,即a不能取2和-2.試題解析:原式=·=當a=0時,原式==2.考點:分式的化簡求值.21、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數(shù)的定義可求得OC的長,可求得C、D點坐標,再利用待定系數(shù)法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.22、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【解析】

(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,②當α=315°時,A、B、F′在一條直線上時,AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉(zhuǎn)角α=30°,根據(jù)對稱性可知,當∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,綜上所述,旋轉(zhuǎn)角α=30°或150°時,∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【點睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉(zhuǎn)變換的性質(zhì)以及特

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論