版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
10July2024|5:03PMEDT
Someinvestorsandmarketobserversarguethattheindustryisonthecuspofa
MarkDelaney,CFA
+1(212)357-0535|
breakthroughinautonomousvehicle(AV)scalingdrivenbynewAIandGPU
mark.delaney@GoldmanSachs&Co.LLC
technology,whileothersarguethatbroad-basedAVdeploymentsmayneveroccur.
KotaYuzawa
+81(3)4587-9863|kota.yuzawa@
Thebottom-lineisthatwebelieveimprovedAItechnologywillhelpthe
GoldmanSachsJapanCo.,Ltd.
industryreachhigherlevelsofperformance,althoughwealsobelievethat
AllenChang
+852-2978-2930|allen.k.chang@
widescaleAVadoptionisstillatleastafewyearsawayasabasecase.We
GoldmanSachs(Asia)L.L.C.
believethatgloballevel3(L3)ADASpenetration(e.g.vehiclesthatcan
GeorgeGalliers
+44(20)7552-5784|
situationallyhaveeyes-offdriving,suchasonahighway)willreach10%ofthe
george.galliers@
GoldmanSachsInternational
marketfornewvehiclesalesin2030,withlevel4orAVs(e.g.eyes-offina
TinaHou
givenarea,suchasarobotaxiinacity)at2.5%in2030.Thisimpliesthatlevel4
+86(21)2401-8694|
tina.hou@
(L4)volumeswillcontinuegrowing,albeitgenerallyforcommercialusecases
GoldmanSachs(China)SecuritiesCompanyLimited
likerobotaxisintheneartointermediateterm.
EricSheridan
+1(917)343-8683|eric.sheridan@
WeassumemostoftheADAS(advanceddriverassistancesystems)andAVindustryvolumegrowthinthenextfewyearswillcomefrompartially
GoldmanSachs&Co.LLC
ToshiyaHari
+1(646)446-1759|toshiya.hari@
autonomousL2/L2+vehiclesthatrequiredriversupervision.Weassume
GoldmanSachs&Co.LLC
DaikiTakayama
L2/L2+mixwillrisefromabout20%ofsalesthisyeartoabout30%in2027.
+81(3)4587-9870|
daiki.takayama@
GoldmanSachsJapanCo.,Ltd.
OurAVforecastimpliesthataglobal?eetofafewmillioncommercialAVs
BenMiller
usedforridesharecouldbeontheroadin2030.Althoughthiswouldcomprise
+1(917)343-8674|
ler@
lessthan1%oftheglobalcarparcofover1bnvehicles,itcouldresultina
GoldmanSachs&Co.LLC
>$25bnmarketforpersonalmobilityfromrobotaxis.
LincolnKong,CFA
+852-2978-6603|lincoln.kong@GoldmanSachs(Asia)L.L.C.
WebelievethatstocksinvestorsshouldownonthisthemeincludeNvidia,Uber,
JerryRevich,CFA
Mobileye,Renesas,Baidu,DesaySVandQuanta.
+1(212)902-4116|jerry.revich@GoldmanSachs&Co.LLC
GivenadvancesinAItechnology,includingthelatestNvidiaprocessorsaswellas
DanielaCosta
+44(20)7774-8354|
differenttrainingapproaches(e.g.afully“end-to-end”approachofcamera/sensor
daniela.costa@
GoldmanSachsInternational
inputsinanddrivingpolicyoutthatcanpotentiallyhelpsolvedif?cultedgecases
VerenaJeng
especiallyifthereisenoughdata,ora“compoundapproach”thatutilizesmachine
+852-2978-1681|verena.jeng@GoldmanSachs(Asia)L.L.C.
learning/AIbutwithsubsystemsthatcanallowforef?ciencyandveri?cationofthe
RyoHarada
solution),weattempttobetterunderstandiftherateofprogresstoward
+81(3)4587-9865|ryo.harada@GoldmanSachsJapanCo.,Ltd.
wider-scaleadoptionofautonomywillaccelerate,includingL3andL4.Seeour
AlexanderDuval
+44(20)7552-2995|
GoldmanSachsdoesandseekstodobusinesswithcompaniescoveredinitsresearchreports.Asaresult,
investorsshouldbeawarethatthe?rmmayhaveacon?ictofinterestthatcouldaffecttheobjectivityofthis
report.Investorsshouldconsiderthisreportasonlyasinglefactorinmakingtheirinvestmentdecision.ForRegACcerti?cationandotherimportantdisclosures,seetheDisclosureAppendix,orgoto
..i//eS.html.Analystsemployedbynon-USaf?liatesarenotregistered/quali?edasresearch
GlobalAutos&IndustrialTech
10July20242
“AI101”sectionofthisreportformoredetailsonAIapproacheslikeend-to-end.
WiththisreportweupdateourglobalADASandAVforecastsbasedoninputsfromourglobalauto,industrial,andTMTteammembers.
Keyworkinthisreport-
1)ExaminationofTesla’stechnicalprogress,andprogressofvariousAVcompanyefforts
2)IllustrativecostpermileforanAVrobotaxibusinesswithaverticallyintegratedmodel,andadiscussiononrideshareandAVbusinessmodels
3)UpdatedglobalADAS/AVforecast
4)Discussionofnewelectronicarchitecturesandimplicationsforsemis
5)2030EPSscenarioanalysisforTesla
PMSummary
Wethinkitisnotablethattherearenowautonomousvehiclesontheroad.ThereareasmallnumberofAVsoperatinginpartsofmajorcitiessuchasSanFrancisco,
Phoenix,BeijingandWuhan.
However,thetechnologyhasyettobebroadlydeployed.Keyissuesgatinggrowtharerelatedtounderstandingcomplextraf?c/drivingscenarios(oredgecases),along
withbusinessandregulatoryfactors.WhileAVsfromcompaniessuchasBaidu(ApolloGo),WaymoandPony.aimayalreadybesaferintermsofaccidentspermilethanhumandriverswithingeofencedareas(e.g.perdatafromleadingcompaniessuchasWaymo,albeitwithAVsontheroadtodaytypicallyabletoqueryahumaninaremotelocationforassistanceifneeded),therecontinuetobecaseswhereAVsgetconfusedorstuckinscenariosahumancouldlikelynavigate.
Weseektobetterunderstandwherethetechnologyandindustrycurrentlystands,andifnewAItechnologycanhelptoaccelerateprogresstowardwider-scaleadoptionofL3(e.g.situationallyeyes-offandhands-offdriving,suchasonahighway)orL4(e.g.
eyes-offinagivenarea,suchasarobotaxiinacity)autonomy.
ResearchonAIscalingdoessuggestthataddedcompute,largertrainingdatasets,
andimprovedmodelarchitecturesshouldcontributetobetterAImodel
performance.MicrosoftCEOSatyaNadelladuringakeynoteatMicrosoftBuild2024notedthatsimilartohowMoore’sLawdrovetechnologyinthepast,AItechnologynowallowscomputeperformancefortrainingdeepneuralnetworkstoroughlydoubleevery6months(referencingresearchfromEpoch).
WeconsiderTeslatobeoneoftheleadersinautonomoustechnology.Tesla’ssupervisedfullselfdriving(FSD)technology,whichisanL2/L2+systemasit
requiresthedrivertopayattentionandbepreparedtotakeoveratalltimes,isalreadysaferthanvehiclesdrivenmanuallyintermsofaccidentspermiledatafromTesla(Exhibit1).Tesla’sdatashowsthatin2023accidentswithsupervisedFSD
GlobalAutos&IndustrialTech
10July20243
(whichisTesla’ssolutionthatwillallowthecartodopointtopointnavigation,andworksonhighwaysandcitystreets)occurredevery4to5millionmiles,andaccidentson
Autopilot(whichincludesmorebasicfeaturesliketraf?cawarecruisecontrolandlanekeeping)occurredevery5to6mnmiles(althoughthesearegenerallyhighwaymiles),comparedtoonceevery600-700KmilesfortheUSonaverage.In1Q24,accidentswithAutopilothappenedonceevery7-8millionmiles.
Exhibit1:TeslaADASsystemmilesdrivenbeforeanaccident
Milesdrivenbeforeaccident(mns)
6
5
4
3
2
1
0
201820192020202120222023
TeslaFSDBeta/SupervisedTeslaAutopilotTeslanon-AutopilotUSaverage
Source:Companydata,FHWA,NHTSA,GoldmanSachsGlobalInvestmentResearch
Whileweconsiderthesesafetystatisticstobeimportant,measuringifTesla
driversgetinfeweraccidentswhileusingthetechnologywithactivedriver
supervision(andtakingoverifthereisanissue)isnotthesameaswhetherthevehicleswouldbebetterand/orsaferwhenunsupervised(e.g.L3/L4capability).
Wethereforebelieveitisalsohelpfultogaugethepercentageofdriveswithno
interventionsandinterventionspermiletoassesswhenTeslamayreachunsupervisedcapability(e.g.L3orL4).Thereareotherperformancemetricsbeyondjustaccidentstoconsider(e.g.properlaneselection,smoothdrivingbehavior,andrespondingto
emergencyvehicles).
WhileTesladoesn’tdiscloseinterventiondataonFSD(andinterventionsareatthe
discretionofthedriverwhichcancomplicateananalysisofthissort),somedrivers
submitinterventiondatatoTeslaFSDtrackerandthisshowsthatthepercentageof
driveswithoutaninterventionhasgoneup,andabout70%ofdriveswiththelatestversionofFSDhavebeenno-interventionperthiscrowd-sourceddata(Exhibit2).Tesla’slatestFSDversion(V12)wasdevelopedwithmorerelianceonAI,oran
“end-to-end”approachofvision/camerainputsinanddrivingpolicyoutthatcanpotentiallyhelpsolvedif?cultedgecasesespeciallyifthereisenoughdata.
Moreover,thissamedatasuggestscriticalinterventionsoccurevery~300miles
withFSD.Whilewethinkitwouldbewrongtoassumethateverydisengagementwouldhaveresultedinacrash,italsosuggeststhetechnologycouldbesome
timeofffrombeingL3orL4giventhe600-700KmilestraveledbetweenaccidentsforthetypicalvehicleintheUS.OurownrecentridesinFSDenabledvehiclesalso
suggestthatFSDisimpressivebutnotyetreadytobeL3orL4,inouropinion.
10July20244
Exhibit2:PercentofTesladriveswithoutaninterventionpercrowdsourceddata
100%90%80%70%60%50%40%30%20%10%
0%
Feb-22
May-22
Aug-22
Nov-22
Feb-23
May-23
Aug-23
Nov-23
Feb-24
May-24
Aug-24
Nov-24
Feb-25
May-25
Aug-25
Nov-25
Feb-26
May-26
Aug-26
Nov-26
Feb-27
May-27
Aug27
%ofdriveswithnodisengagements--------SteadyFSDscalingRapidFSDscaling
----FSDhitsceiling
Source:TeslaFSDTracker,GoldmanSachsGlobalInvestmentResearch
ExtrapolatingtherateofnointerventiondrivesimpliesinourviewthatTeslacouldreachL3onhighwaysatfullspeeds,atleastinclearweather,inthenexttwotothreeyears,especiallyifTesla’ssigni?cantinvestmentsintechnology(Teslaisspending$3-$4bnonNvidiacomputethisyear)anduseofanend-to-endAIapproachhelp.Giventheaddedcomplexitiesofoperatingindenseurbanenvironmentsandhighbarforsafetyin
unsuperviseddriving,weassumegeneralizedL4wouldtakelongertoreach.Webelievethatutilizinghumanassistanceinaremotelocation(similartocurrentrobotaxieffortslikeWaymoandBaidu)couldallowTeslatoreachL4functionalitysoonerthanitis
otherwisetrackingtoalbeitwithaddedcostandscalingchallenges.
LookingatAVeffortsbesidesTesla,whileaccidentdatahasbeenpromising(e.g.
Waymo’sanalysisshowsatleast57%fewervehiclecrashespermilethanahuman
driverwithitsL4robotaxis),thecurrentdeployments(e.g.fromWaymo,Pony.aiandBaiduApolloGo)havethusfarbeentargetedintermsofdeployments,andlimitedtocertainsectionsofselectcities(wehavemoredetailsinthe“CompanyADAS
andAVefforts”sectionofthisreport).Whilethismaybedueinparttotechnologyscalabilityissues(e.g.relyingondetailed3-Dmaps,needinghumanremoteassistanceattimes,anddif?cultyinhightraf?c/complexscenarioslikeconstruction),wealso
believeeconomicconsiderationsareafactor.AsweshowinExhibit3,thecostsper
milearelikelyveryhighatlowvolumesdueinparttothecostofthehardware/computeandhumanremoteassistance(notethatTeslacouldhaveacostadvantagewithits
AV/ADAStechnologygivenitsverticalintegrationforinferencechips,scale,anditslimitedsensorsuite).
Assumingthatdepreciationandinsurancecostsnormalizetolevelsonparwithhumandrivencommercialrideshareentities,weestimatethatvehicledrivingcostspermileforanAVat50-75kmilesdrivenperyearpervehicleandroughly10carsperremote
operatorcouldreach~$1.00permile(weshowthisforillustrativepurposesoccurringinthe2030timeframeinExhibit3).Costswithcorporateoverhead/R&Dwouldbehigher.Longer-termthesecostscoulddecline.
GlobalAutos&IndustrialTech
10July20245
Exhibit3:IllustrativecostmodelforaverticallyintegratedAVridesharecompany
2023
2024E
2025E
2030E
2035E
2040E
AVcostpervehicle($US)
125,000
100,000
85,000
50,000
50,000
50,000
Milesdrivenpercar
22,500
25,000
27,500
75,000
100,000
125,000
Vehiclesinserviceyearend
177
259
478
2,570
18,597
72,967
Wagesperremoteoperator
76,875
78,797
80,373
87,870
94,661
99,982
Carsperoperator
3
3
3
10
30
35
Vehicledrivingcosttpermile
$3.35
$3.13
$2.94
$0.98
$0.70
$0.58
R&D($USmn)
825
908
998
1,521
1,960
2,502
SG&A($USmn)
230
265
304
612
1,127
1,479
Tottalcosttpermile
$268.71
$184.11
$102.03
$12.04
$2.36
$1.02
Source:GoldmanSachsGlobalInvestmentResearch
Forcontext,Lyftcommittedtopayingdriversatleast70%ofriderpaymentsperweekafterexternalfeeslikecommercialinsurance(weestimate~$0.30permile)are
subtracted,andLyftestimatesthatthereare~$0.31/mileofexpensesassociatedwithoperatingthecarforthedriver(i.e.fuelcosts,maintenance,cleaning,anddepreciation).WenotethattheaveragecosttoownapersonalcarintheUSis~$0.80permileperAAA,assuming15Kmilesdrivenperyear.
Inaddition,ourrecentdiscussionswithAVoperatorsinChinasuggestthatAV
companiessofarneedtochargeadiscounttoconventionalrideshareplatformssuchasDiDiofatleast30%inordertoattractuserstothenetworkandtocompensatefor
factorslikelimitstothelocationsthatAVscanpresentlyreachduetogeofencingrestrictions.
Finally,regulatory/liabilityandsocietalconcernsmaygatetherateofgrowth.For
example,Cruisepausedcommercialoperationsafterasevereaccidentinvolvingoneofitsrobotaxis,andcommunitiesmayhaveamuchhighersafetybarforAVsthancurrenthumanperformance.
AsabasecasewenowassumethatgloballyL3enabledvehiclescouldreach10%ofindustryunitsalesvolumesin2030,andthatL4willbe2.5%in2030drivenbycontinuedtechnologicaladvancement(includingfromAI)andlowercostsofrelevanthardware(e.g.lidarandtheintroductionofpurposebuiltAVplatforms).However,ifthelatestAItechnologyhelpstheindustrytoaccelerateautonomousvehicledevelopmentfasterthanweexpect,thenwebelievethiscouldoccurafewyearsearlier.
GlobalAutos&IndustrialTech
10July20246
Exhibit4:GlobalADASandAVL3-5penetrationrateasapercentofnewlightvehiclesales
Globallevel3/4/5penetrationrate
70%
60%
50%
40%
30%
20%
10%
0%
BullBase
Source:Companydata,GoldmanSachsGlobalInvestmentResearch
OurAVforecastimpliesthataglobal?eetofafewmillioncommercialAVsused
forridesharecouldbeontheroadin2030.Althoughthiswouldcompriselessthan1%oftheglobalcarparcofover1bnvehicles,itcouldresultina>$25bnmarketforpersonalmobilityfromrobotaxis(dependingonfactorssuchasASPs,tripsper
day,andaveragemilestraveledpertrip).
Exhibit5:Weestimatethemarketin2030forrobotaxiscouldbe>$25bn
Revenuepertrip
Tripsper
robotaxiperday
150
GlobalAVsinoperation(000s)
1,3502,0002,650
2030marketscenariosforrobotaxis($mn)
750
3,300
4,000
$5
2
$548
$2,738
$4,928
$7,300
$9,673
$12,045
$14,600
4
$1,095
$5,475
$9,855
$14,600
$19,345
$24,090
$29,200
6
$1,643
$8,213
$14,783
$21,900
$29,018
$36,135
$43,800
8
$2,190
$10,950
$19,710
$29,200
$38,690
$48,180
$58,400
10
$2,738
$13,688
$24,638
$36,500
$48,363
$60,225
$73,000
12
$3,285
$16,425
$29,565
$43,800
$58,035
$72,270
$87,600
14
$3,833
$19,163
$34,493
$51,100
$67,708
$84,315
$102,200
$7
2
$767
$3,833
$6,899
$10,220
$13,542
$16,863
$20,440
4
$1,533
$7,665
$13,797
$20,440
$27,083
$33,726
$40,880
6
$2,300
$11,498
$20,696
$30,660
$40,625
$50,589
$61,320
8
$3,066
$15,330
$27,594
$40,880
$54,166
$67,452
$81,760
10
$3,833
$19,163
$34,493
$51,100
$67,708
$84,315
$102,200
12
$4,599
$22,995
$41,391
$61,320
$81,249
$101,178
$122,640
14
$5,366
$26,828
$48,290
$71,540
$94,791
$118,041
$143,080
$9
2
$986
$4,928
$8,870
$13,140
$17,411
$21,681
$26,280
4
$1,971
$9,855
$17,739
$26,280
$34,821
$43,362
$52,560
6
$2,957
$14,783
$26,609
$39,420
$52,232
$65,043
$78,840
8
$3,942
$19,710
$35,478
$52,560
$69,642
$86,724
$105,120
10
$4,928
$24,638
$44,348
$65,700
$87,053
$108,405
$131,400
12
$5,913
$29,565
$53,217
$78,840
$104,463
$130,086
$157,680
14
$6,899
$34,493
$62,087
$91,980
$121,874
$151,767
$183,960
Source:Companydata,GoldmanSachsGlobalInvestmentResearch
Therearealsosigni?cantsocietalbene?tsfromADASandAVtechnology,asabout40kpeopledieintraf?cfatalitiesintheUSannuallyperNHTSA,andover1millionpeopledieeachyeargloballyinaccidentspertheWorldHealthOrganization.
GlobalAutos&IndustrialTech
10July20247
AI101-WhatisAI,andwhat’sthedifferencebetween“end-to-end”anda“compoundapproach”?
Inthissectionofthereport,weexplainkeyconceptsforarti?cialintelligence,asdetailedinapriorreportledbyToshiyaHari.
Arti?cialIntelligence:Arti?cialintelligencedescribesascienceofsimulatingintelligentbehaviorincomputers.Itentailsenablingcomputerstoexhibithuman-likebehavioraltraitsincludingknowledge,reasoning,commonsense,learning,anddecisionmaking.
Machinelearning:Machinelearningisabranchofarti?cialintelligenceandentails
enablingcomputerstolearnfromdatawithoutbeingexplicitlyprogrammed.For
example,thecomputerlearnshowtoidentifyanobjectsuchasadogoracatwithdata.
Neuralnetworks:AneuralnetworkinthecontextofAI/machinelearningdescribesatypeofcomputerarchitecturethatsimulatesthestructureofahumanbrainontowhichAI/machinelearningprogramscanbebuilt.Itconsistsofconnectednodesinaggregatethatcansolvemorecomplexproblemsandlearn,liketheneuronsinahumanbrain,suchasinExhibit6.Theprocessofbackpropagationisusedinmachinelearningto
adjusttheweightoftheneuronsintheneuralnetandstrengthenthepathstoproduceacorrectanswer(e.g.toidentifyanobject).
Exhibit6:Illustrativeneuralnetframework
Source:GoldmanSachsGlobalInvestmentResearch
Deeplearningisasubsetofmachinelearningwithahierarchyoflayersinaneuralnet,withdeeplearninghavingmorelayers.Forexampleinthedogorcatexample,differentlayerscouldcorrespondtothekeyde?ningfeaturesofagivenanimal.
CompoundAIsystemvs.end-to-endapproach:TherearedifferentapproachestoAIdevelopmentinthecontextofautonomousdriving,withonebeinganend-to-enddesign(asdescribedmorefullyinthisarticle),whichistheapproachTeslahasmovedtoandisasinglemodelthattakesthevisioninputsinanddirectlyoutputsthedrivepolicylike
steeringandbraking.Itreducestheneedforhumancoding,andmayhelpsolvethe
GlobalAutos&IndustrialTech
10July20248
kindofedgecasesthathavelimitedAVprogressthusfar.AnalternativeapproachisacompoundsolutionthatcanutilizeAIfordifferentsubsystemsorinputs.Thesolutioncanthenusethistogetherwithgluecodeand/oroverlayotherrules/factors(e.g.
ensuringcertaintraf?clawsareobeyed).WhilethereisadebateifthiswilllimitwhatAIcanachieveintermsofhardtounderstandedgecasescenarios,itcanhaveef?ciencies(e.g.ChatGPTdoesn’tneedtouseAItrainingtosolvebasicmath,itcanjustquerya
calculatormodule,asdescribedinthisblogontheprosandconsofanend-to-endvs.acompoundapproach)andacompoundsystemcanbeeasiertounderstand/verify(whichisespeciallyimportantindrivingasamistakefromAIcouldbefatal).CompoundAI
approachesstillmakeuseofadvancedAItechniquesliketransformers.Wealsonote
thatablendofapproachescanbeused,suchasanend-to-endmodelasaconsiderationforthedrivingdecisionsbutwithcertainpolicyrulesthatareprogrammed.
Willmorecomputeandanend-to-endapproachhelpTesla’sFSDprogress?
Teslahadexpectedtohavefullyautonomousvehiclesreadyin2020per
commentsatits2019AutonomyInvestorDay,andtheindustrymorebroadlyhasstruggledtomeetitsAVtargets.InthissectionwediscussifnewerAItechnologycanhelpTeslatomeetthisobjective.
Speci?cally,inMay2023,TeslaannouncedonXthatitwaswouldadoptanend-to-endAIapproachwithVersion12ofitssupervisedFullSelfDriving(orFSD)product.Recallthatanend-to-endapproachisvisionin(fromthecameras)anddrivingpolicy(suchassteeringandbraking)out.Moreover,onits1Q24earningscall,Teslacommentedthatitwasnolongercomputeconstrained.
ResearchonAIscalingdoessuggestthataddedcompute,largertrainingdatasets,andimprovedmodelarchitecturesshouldcontributetobetterAImodelperformance.
MicrosoftCEOSatyaNadelladuringakeynoteatMicrosoftBuild2024notedthatsimilartohowMoore’sLawdrovetechnologyinthepast,AItechnologynowallowscomputeperformancefortrainingdeepneuralnetworkstoroughlydoubleevery6months
(referencingresearchfromEpoch).
Oncompute,Teslaisexpectingtohavecommissionedandinstalledaround85KH100GPUsfromNvidiabytheendof2024,upfrom35Kasofits1Q24earningscall.Teslaplanstoinvestabout$3-$4bninNvidiahardwarein2024.TheH100improves
performancebyupto9XforAItrainingandupto30XforAIinferenceovertheprior
A100GPUforlargelanguagemodel(LLM)transformerdevelopmentperNvidia.
Additionally,NvidianotedthattheupcomingGB200withBlackwellcouldofferupto30XbetterperformancecomparedtothesamenumberofNvidiaH100sforLLMinferenceworkloadswithupto25Xlowercostandenergyconsumption.
WeconsiderTeslatobeoneoftheleadersinautonomoustechnology.Tesla’s
supervisedFSDtechnology,whichisanL2/L2+systemasitrequiresthedrivertopayattentionandbepreparedtotakeoveratalltimes,isalreadysaferthana
10July20249
humandriverintermsofaccidentspermileperdatafromTesla(Exhibit7).Tesla’sdatashowsthatin2023accidentswithFSD(whichisTesla’ssolutionthatallowsthecartodopointtopointnavigation,andworksonhighwaysandcitystreets)occurredevery4to5millionmiles,andaccidentsonAutopilot(whichincludesmorebasicfeaturesliketraf?cawarecruisecontrolandlanekeeping)occurredevery5to6mnmiles(althoughthesearegenerallyhighwaymiles),comparedtoonceevery600-700KmilesfortheUSonaverage.In1Q24,accidentswithAutopilothappenedonceevery7-8millionmiles.
Exhibit7:TeslaADASsystemmilesdrivenbeforeanaccident
Milesdrivenbeforeaccident(mns)
6
5
4
3
2
1
0
201820192020202120222023
TeslaFSDBeta/SupervisedTeslaAutopilotTeslanon-AutopilotUSaverage
Source:Companydata,FHWA,NHTSA,GoldmanSachsGlobalInvestmentResearch
Whileweconsiderthisanimportantmetric(withrealworldimplications),
measuringifTesladriversgetinfeweraccidentswhileusingthetechnologywithactivedriversupervision(andtakingoverifthereisanissue)isnotthesameaswhetherthevehicleswouldbebetterand/orsaferwhenunsupervised(e.g.L3/L4capability).Wethereforebelieveitisalsohelpfultogaugethepercentageofdrives
withnointerventions,andinterventionspermile,toassesswhenTeslamayreachunsupervisedcapability(e.g.L3orL4).
WhileTesladoesn’tdiscloseinterventiondataonFSD(andinterventionsareatthe
discretionofthedriverwhichcancomplicateananalysisofthissort),somedrivers
submitinterventiondatatoTeslaFSDtrackerwhichshowsthatthepercentageofdriveswithoutaninterventionhastrendedhigherwithFSDV12(theversionwhenTeslamovedtoanend-to-endAIapproach).About70%ofdrivesonV12havebeen
no-interventionperthiscrowd-sourceddata,whichisanimprovementfromV10andV11.
GlobalAutos&IndustrialTech
10July202410
Exhibit8:TeslaFSDperformancebyversionpercrowd-sourceddata
80%
%ofdriveswithnodisengagements
70%
60%
50%
40%
30%
20%
10%
0%
12
.11.3
10.6911.4
10.11
o10.12
2/1/2022
3/1/2022
4/1/2022
5/1/2022
6/1/2022
7/1/2022
8/1/2022
9/1/2022
10/1/2022
11/1/2022
12/1/2022
1/1/2023
2/1/2023
3/1/2023
4/1/2023
5/1/2023
6/1/2023
7/1/2023
8/1/2023
9/1/2023
10/1/2023
11/1/2023
12/1/2023
1/1/2024
2/1/2024
10.10
Source:TeslaFSDTracker
Moreimportantly,whatdoesthisdatasuggestforwhenTeslacouldreachL3or
eyes-offcapability?Therearedifferentpotentialextrapolationsofthedata,includingrapidscaling,slowerbutsteadyprogress,oraneventualceilingonimprovement.Whilewerecognizethatthisdataisimperfect,itwouldimplyinouropinionthatTeslaistracking
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉(xiāng)鎮(zhèn)居民飲水需求分析方案
- 電力系統(tǒng)應(yīng)急預(yù)案評(píng)估及更新制度
- 幼兒園戶外活動(dòng)安全方案與演練
- 2024年關(guān)鍵汽車配件國(guó)家儲(chǔ)備采購(gòu)
- 2024年人力資源外包協(xié)議書
- 行政管理學(xué)-2022-2023-1學(xué)期學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 餐飲行業(yè)垃圾清運(yùn)解決方案
- 商用廚房設(shè)備售后服務(wù)保障方案
- 2024年分期付款租賃合同樣本
- 銀行執(zhí)行力培訓(xùn)
- 合同模板 交稅
- 社區(qū)計(jì)劃生育自查報(bào)告(3篇)
- 人教版小學(xué)數(shù)學(xué)六年級(jí)上冊(cè)第二單元《位置與方向》單元集體備課整體設(shè)計(jì)
- 2024年銀行考試-建設(shè)銀行紀(jì)檢監(jiān)察條線考試近5年真題集錦(頻考類試題)帶答案
- 南京六校聯(lián)合體2025屆高三上期10月聯(lián)考英語(yǔ)試題卷(含答案)
- 提升餐飲服務(wù)質(zhì)量
- 九年級(jí)語(yǔ)文上冊(cè)第一單元大單元教學(xué)設(shè)計(jì)
- 期中易錯(cuò)卷(第1-4單元)(試題)-2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)人教版
- 中國(guó)消費(fèi)名品申報(bào)書;“數(shù)字三品”應(yīng)用場(chǎng)景典型案例申報(bào)書
- 《邏輯的力量-采用合理的論證方法》教學(xué)設(shè)計(jì) 2023-2024學(xué)年統(tǒng)編版高中語(yǔ)文選擇性必修上冊(cè)
- 2025屆廣西南寧市、玉林市、貴港市等高考仿真模擬物理試卷含解析
評(píng)論
0/150
提交評(píng)論