幾何作圖問(wèn)題-2024年中考數(shù)學(xué)二輪復(fù)習(xí)(江蘇專用)【含答案】_第1頁(yè)
幾何作圖問(wèn)題-2024年中考數(shù)學(xué)二輪復(fù)習(xí)(江蘇專用)【含答案】_第2頁(yè)
幾何作圖問(wèn)題-2024年中考數(shù)學(xué)二輪復(fù)習(xí)(江蘇專用)【含答案】_第3頁(yè)
幾何作圖問(wèn)題-2024年中考數(shù)學(xué)二輪復(fù)習(xí)(江蘇專用)【含答案】_第4頁(yè)
幾何作圖問(wèn)題-2024年中考數(shù)學(xué)二輪復(fù)習(xí)(江蘇專用)【含答案】_第5頁(yè)
已閱讀5頁(yè),還剩66頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題。8幾何作圖相關(guān)問(wèn)題

目錄

題型1_選擇題、填空題中的作圖問(wèn)題

題型2一網(wǎng)格作圖__________作滿足條件的三角形

題型3網(wǎng)格作圖作滿足條件的四邊形

題型4網(wǎng)格作圖作滿足條件的線段

題型5網(wǎng)格作圖作滿足條件的點(diǎn)和角

題型6一尺規(guī)作圖__________作滿足條件的三角形

題型7尺規(guī)作圖作滿足條件的四邊形

題型8尺規(guī)作圖與圓有關(guān)的作圖

題型9尺規(guī)作圖與正多邊形有關(guān)的作圖

量;熱點(diǎn)題型歸納

題型1選擇題、填空題中的作圖問(wèn)題

【知識(shí)要點(diǎn)與解題策略】

熟練掌握基本作圖和基本圖形的性質(zhì)和判定方法L基本作圖:要求能從作好的圖形痕跡中

能判斷出作的是哪種基本作圖.

(1)作一條線段等于已知線段;(2)作一個(gè)角等于已知角;

(3)平分己知角;(4)作線段的垂直平分線.

(5)經(jīng)過(guò)一點(diǎn)作已知直線的垂線

【典例分析】

例題.(2024?遼寧沈陽(yáng)?模擬預(yù)測(cè))

1.如圖,在菱形/BCD中,按如下步驟作圖:①分別以點(diǎn)C和點(diǎn)。為圓心,大于長(zhǎng)

為半徑作弧,兩弧交于點(diǎn)N;②作直線兒W,與CD交于點(diǎn)E,連接5E,若4D=4,

直線MN恰好經(jīng)過(guò)點(diǎn)A,則BE的長(zhǎng)為()

試卷第1頁(yè),共22頁(yè)

A.3百B.377C.273D.277

【變式訓(xùn)練】

(2024?浙江金華?二模)

2.已知銳角NAOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作

PQ,交射線OB于點(diǎn)D,連接CD;

(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交而于點(diǎn)M,N;

(3)連接OM,MN.

根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是()

A.ZCOM=ZCODB.若OM=MN,貝此AOB=20°

C.MNHCDD.MN=3CD

(2023?江蘇南通?二模)

3.如圖,在O8C中,AB=AC,乙4=36。.按照如下步驟作圖:

①分別以點(diǎn)45為圓心,大于;NC的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M,N;

試卷第2頁(yè),共22頁(yè)

②作直線MN,交/C點(diǎn)。;

③以。為圓心,3c長(zhǎng)為半徑作弧,交NC的延長(zhǎng)線于點(diǎn)E;

④連接以Z3E.

下列說(shuō)法錯(cuò)誤的是()

1CE3

A.AD=DEB.NCBE=-ZAC.BC1=AC-CDD.—=-

2CD5

(2023?湖北黃石?中考真題)

4.如圖,在。8c中,按以下步驟作圖:①分別以點(diǎn)8,C為圓心,大于的長(zhǎng)為半徑

畫弧,兩弧相交于E,尸兩點(diǎn),E尸和8c交于點(diǎn)O;②以點(diǎn)/為圓心,NC長(zhǎng)為半徑畫弧,

交48于點(diǎn)D;③分別以點(diǎn)。,C為圓心,大于;CD的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)

連接NM,和交于點(diǎn)N,連接CW若N8=9,/C=5,則CW的長(zhǎng)為()

59

A.2B.-C.4D.

22

(2023?浙江金華?二模)

5.已知線段42,按如下步驟作圖:

①取線段48中點(diǎn)C;

②過(guò)點(diǎn)C作直線/,使/LA8;

③以點(diǎn)C為圓心,長(zhǎng)為半徑作弧,交/于點(diǎn)D;

④作/D4C的平分線,交/于點(diǎn)£.則tan/D/E的值為(

試卷第3頁(yè),共22頁(yè)

V5+1

A?-2b

-¥2

(2023?江蘇蘇州?一模)

6.在平面直角坐標(biāo)系中,矩形/BCD的邊2C在x軸上,O為線段3c的中點(diǎn),矩形N8CD

(1)以點(diǎn)C為圓心,適當(dāng)?shù)拈L(zhǎng)度為半徑畫弧分別交C4、CD于點(diǎn)、E、F;

(2)分別以點(diǎn)£,尸為圓心,大于;跖的長(zhǎng)為半徑畫弧交于點(diǎn)G;

(3)作射線CG交4D于〃,則線段的長(zhǎng)為.

(2023?四川成都?二模)

7.如圖,在A48C中,按以下步驟作圖:①以點(diǎn)A為圓心,以4B長(zhǎng)為半徑作弧,交BC于

點(diǎn)、D;②分別以5,。為圓心,以大于1團(tuán)長(zhǎng)為半徑作弧,兩弧交于點(diǎn)尸;③連接在交

于點(diǎn)E,若NB=2NC,BC=23,DC=13,則/E=.

(2023?江蘇揚(yáng)州?一模)

8.如圖,已知在菱形A8CD中,ZA=30°,以點(diǎn)/、8為圓心,取大于;的長(zhǎng)為半徑,

分別作弧相交于兩點(diǎn),過(guò)此兩點(diǎn)的直線交邊于點(diǎn)E(作圖痕跡如圖所示),連接BE、

BD,若AE=2,則菱形N8CZ)的面積為.

試卷第4頁(yè),共22頁(yè)

AC

(2023?湖南?中考真題)

9.如圖,在中,ZC=90°,按以下步驟作圖:①以點(diǎn)A為圓心,以小于/C長(zhǎng)為

半徑作弧,分別交于點(diǎn)",N;②分別以M,N為圓心,以大于;的長(zhǎng)為半

徑作弧,在/8/C內(nèi)兩弧交于點(diǎn)O;③作射線/。,交BC丁點(diǎn)D.若點(diǎn)。到43的距離為

1,則CD的長(zhǎng)為.

C

10.如圖,在平行四邊形中,按如下步驟作圖:①以點(diǎn)A為圓心,以適當(dāng)

長(zhǎng)為半徑畫弧,分別交N8,/D于點(diǎn)“,N;②分別以點(diǎn)M,N為圓心,以大于:"N

的長(zhǎng)為半徑畫弧,兩弧在/B4D內(nèi)交于點(diǎn)尸;③作射線4P交于點(diǎn)E.若乙8=120。,則

NEAD為°.

題型2網(wǎng)格作圖一作滿足條件的三角形

【知識(shí)要點(diǎn)與解題策略】

掌握4種特殊三角形的幾何性質(zhì)和作圖方法:1.直角三角形;

2.等腰直角三角形;

試卷第5頁(yè),共22頁(yè)

3.等腰三角形;

4.等邊三角形;

5.涉及到面積問(wèn)題的,要掌握網(wǎng)格中計(jì)算多邊形面積的幾種常用方法:

(1)直接用公式法;

(2)割補(bǔ)法;

(3)匹克定理法(不知道這個(gè)定理的同學(xué)自行百度搜索)

【典例分析】

例題(2023?江西?中考真題)

11.如圖是4x4的正方形網(wǎng)格,請(qǐng)僅用無(wú)刻度的直尺按要求完成以下作圖(保留作圖痕

跡).

圖1

⑴在圖1中作銳角A4BC,使點(diǎn)C在格點(diǎn)上;

(2)在圖2中的線段48上作點(diǎn)。,使尸。最短.

【變式訓(xùn)練】

(2023?吉林長(zhǎng)春?二模)

12.圖①、圖②、圖③都是6x6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方

形的頂點(diǎn)叫做格點(diǎn),線段22的端點(diǎn)都在格點(diǎn)上,在給定的網(wǎng)格中,只用無(wú)刻度的直尺,按

下列要求畫圖,只保留作圖痕跡,不要求寫畫法.

丁T丁丁丁

IIIII

L_」__L__L__I_1__」

IIIIII

IIIIII

??????

卜一一I——?-一+——I——I--T

??????

圖②

(1)在圖①中畫使NR4C=45。;

試卷第6頁(yè),共22頁(yè)

(2)在圖②中畫△/8D,使△N8D是軸對(duì)稱圖形;

(3)在圖③中畫,使N8邊上的高將分成面積比為1:2的兩部分.

(2023?浙江?一模)

13.如圖,在7x5的方格紙/BCD中,有一格點(diǎn)尸,請(qǐng)按要求作圖,且所畫格點(diǎn)三角形與格

點(diǎn)四邊形的頂點(diǎn)均不與點(diǎn)4B,C,。重合.

圖1圖2

⑴在圖1中畫一個(gè)格點(diǎn),。尺,使點(diǎn)0,R分別落在邊2C,CD上,且々。尺=90。

⑵在圖2中畫一個(gè)有兩邊相等的格點(diǎn)四邊形"‘G",使點(diǎn)E,F,G,〃分別落在邊42,

BC,CD,£%上,且點(diǎn)尸在邊上.

(2023?吉林白城?二模)

14.圖①.圖四、圖③都是6x6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1.每個(gè)小正方

形的頂點(diǎn)叫做格點(diǎn),故段42的端點(diǎn)都在格點(diǎn)上.在給定的網(wǎng)格中,只用無(wú)刻度的直尺,按

下列要求畫圖,只保留作圖痕跡,不要求寫畫法.

圖①圖②圖③

(1)在圖①中畫一以?,使。8C的面積是10;

(2)在圖②中畫四邊形ABDE,使四邊形ABDE是軸對(duì)稱圖形;

(3)在圖③中的線段48上找一點(diǎn)尸,使”=2BP.

(23-24九年級(jí)下?江蘇鹽城?階段練習(xí))

15.圖①、圖②、圖③均是5x5的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)為1,每個(gè)小正方形

的頂點(diǎn)稱為格點(diǎn),線段N8的端點(diǎn)均在格點(diǎn)上.只用無(wú)刻度的直尺,在給定的網(wǎng)格中按要求

試卷第7頁(yè),共22頁(yè)

畫圖,不要求寫畫法,保留作圖痕跡.要求:

I---1一一L

III

I___L__L_

圖①圖②圖③

⑴在圖①中畫面積為3的“8C,且點(diǎn)C在格點(diǎn)上;

(2)在圖②中畫面積為6的DABCD,且點(diǎn)C、。均在格點(diǎn)上;

(3)在圖③中畫面積為4的矩形N8CD.

題型3網(wǎng)格作圖——作滿足條件的四邊形

【知識(shí)要點(diǎn)與解題策略】

1.熟練掌握四種特殊四邊形的幾何性質(zhì)2.涉及到面積問(wèn)題的,要掌握網(wǎng)格中計(jì)算多邊形

面積的幾種常用方法:

(1)直接用公式法;

(2)割補(bǔ)法;

(3)匹克定理法(不知道這個(gè)定理的同學(xué)自行百度搜索)

【典例分析】

例題.(2024?湖北武漢?一模)

16.如圖是由小正方形組成的網(wǎng)格,四邊形48CD的頂點(diǎn)都在格點(diǎn)上,僅用無(wú)刻度的直尺在

所給定的網(wǎng)格中按要求完成下列畫圖,畫圖過(guò)程用虛線表示,畫圖結(jié)果用實(shí)線表示.

(1)在圖1中,先以點(diǎn)A為位似中心,將四邊形/BCD縮小為原來(lái)的畫出縮小后的四邊

形么片。2,再在N8上畫點(diǎn)£,使得?!昶椒炙倪呅?BCD的周長(zhǎng);

(2)在圖2中,先在48上畫點(diǎn)尸,使得W=8C,再分別在4D,4B上畫點(diǎn)〃,N,使得

試卷第8頁(yè),共22頁(yè)

四邊形BCW是平行四邊形.

【變式訓(xùn)練】

(2023?吉林白山?一模)

17.如圖①,圖②,在9x9的正方形網(wǎng)格中,按要求畫平行四邊形,使每個(gè)圖形同時(shí)滿足

下列條件:(1)它的四個(gè)頂點(diǎn)以及對(duì)角線交點(diǎn)都在格點(diǎn)上;

(2)所畫的圖形的周長(zhǎng)是整數(shù);

(3)兩個(gè)圖形不全等.

圖①圖⑵

(2023,吉林長(zhǎng)春?一模)

18.圖①、圖②均是6x6的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)為1,每個(gè)小正方形的頂點(diǎn)

稱為格點(diǎn),線段的端點(diǎn)均在格點(diǎn)上,只用無(wú)刻度的直尺,在給定的網(wǎng)格中,按下列要求

以AB為邊畫一個(gè)平行四邊形48CD.

圖①圖②

(1)平行四邊形的面積為5.

(2)圖①、圖②所畫圖形不全等.

(3)點(diǎn)C、。均在格點(diǎn)上.

(2023?浙江溫州?三模)

19.圖1,圖2都是由邊長(zhǎng)為1的小等邊三角形構(gòu)成的網(wǎng)格,每個(gè)小等邊三角形的頂點(diǎn)稱為

試卷第9頁(yè),共22頁(yè)

格點(diǎn),分別按要求在網(wǎng)格內(nèi)畫出格點(diǎn)圖形(頂點(diǎn)均在格點(diǎn)上).

(1)在圖1中以N2為對(duì)角線畫一個(gè)四邊形ND2C,使得N2=CD

(2)在圖2中以點(diǎn)£為頂點(diǎn)畫一個(gè)菱形EFGH,使得S菱形.GH=2金邊形的c.

(2022?廣東廣州?三模)

20.圖1、圖2分別是7x6的網(wǎng)格,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為1.請(qǐng)按要求畫出下

列圖形,所畫圖形的各個(gè)頂點(diǎn)均在所給小正方形的頂點(diǎn)上.

圖1圖2

(1)在圖1中畫一個(gè)周長(zhǎng)為8宕的菱形N8CD(非正方形);

(2)在圖2中畫出一個(gè)面積為9,且3VP=45。的口TWPQ,并直接寫出口AWPQ較長(zhǎng)的對(duì)角

線的長(zhǎng)度.

題型4網(wǎng)格作圖——作滿足條件的線段

【知識(shí)要點(diǎn)與解題策略】

1.審清題意,要求作的圖是線段,還是射線,還是直線;2.題目的本質(zhì)作圖作的是什么,

它有什么要求或者特性;

3.熟練掌握涉及到線的幾個(gè)基本作圖:

(1)平行線的作法;

(2)垂線的作法;

(3)角平分線的作法;

(4)垂直平分線的作法;

(5)中線的作法;

(6)中位線的作法.

試卷第10頁(yè),共22頁(yè)

【典例分析】

例題.(2024?吉林?一模)

21.如圖,在5x5的方格紙中,線段48的端點(diǎn)在格點(diǎn)上,請(qǐng)按要求畫圖.

(1)如圖①,畫出一條線段/C,使/C=48,。在格點(diǎn)上;

(2)如圖②,畫出一條線段E尸使£尸、互相平分,E、尸均在格點(diǎn)上;

(3)如圖③,以/、3為頂點(diǎn)畫出一個(gè)四邊形,使其是中心對(duì)稱圖形而不是軸對(duì)稱圖形,且

頂點(diǎn)均在格點(diǎn)上.

【變式訓(xùn)練】

(2024?浙江溫州?一模)

22.如圖的網(wǎng)格中,的頂點(diǎn)都在格點(diǎn)上,每個(gè)小正方形的邊長(zhǎng)均為1.僅用無(wú)刻度的

直尺在給定的網(wǎng)格圖中分別按下列要求畫圖.(保留畫圖痕跡,畫圖過(guò)程中輔助線用虛線,

畫圖結(jié)果用實(shí)線、實(shí)心點(diǎn)表示)

圖1圖2

⑴請(qǐng)?jiān)趫D1中畫出zJBC的高2D.

(2)請(qǐng)?jiān)趫D2中在線段上找一點(diǎn)E,使NE=3.

(2024?江西南昌?一模)

23.如圖是7x6的正方形網(wǎng)格,已知格點(diǎn)。(頂點(diǎn)在小正方形頂點(diǎn)處的三角形稱為格點(diǎn)

三角形),請(qǐng)僅用無(wú)刻度直尺完成下列作圖(要求保留作圖痕跡,不要求寫作法).

試卷第11頁(yè),共22頁(yè)

(1)圖1中,在N8邊上找一點(diǎn)。,作線段CD,使得Sjcongs/Bc;

3

(2)圖2中,在邊上找一點(diǎn)E,作線段CE,使得S“CE=LS“BC.

(2022?湖北武漢?模擬預(yù)測(cè))

24.已知,在8x8的正方形組成的網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),“BC的頂點(diǎn)都

是格點(diǎn).僅用無(wú)刻度的直尺在給定網(wǎng)格中完成畫圖,畫圖過(guò)程用虛線表示.

⑴如圖1,①直接寫出前的值;②畫出CD平分交AB于點(diǎn)。;

(2)如圖2,先在邊N8上畫出中點(diǎn)E,再在邊NC上畫出點(diǎn)尸,使直線E尸平分。8C的周長(zhǎng);

⑶如圖3,先畫線段的垂直平分線/,再在直線/上畫出點(diǎn)G,使NBGC=NBAC.

(2024?湖北武漢?一模)

25.如圖是由小正方形組成的(8x8網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).A,B,C三點(diǎn)是

格點(diǎn),點(diǎn)尸在3c上,僅用無(wú)刻度的直尺在給定網(wǎng)格中完成畫圖.

(1)在圖1中,畫〃/BCD,再在4D上畫點(diǎn)E,使得DE=BP;

試卷第12頁(yè),共22頁(yè)

(2)在圖2中,畫出線段/P的中點(diǎn)M,然后在NC上畫一點(diǎn)尸,使Pb_L/C.

題型5網(wǎng)格作圖——作滿足條件的點(diǎn)和角

【知識(shí)要點(diǎn)與解題策略】

1.審清題意,弄清楚問(wèn)題的本質(zhì);2.掌握關(guān)于角的幾個(gè)基本作圖:

(1)作一個(gè)角等于已知角;

(2)作角平分線;

【典例分析】

例題.(2024?浙江寧波?模擬預(yù)測(cè))

26.圖1,圖2,圖3都是由小等邊三角形構(gòu)成的網(wǎng)格,請(qǐng)分別在圖1,圖2,圖3中各作一

(2022?湖北武漢?模擬預(yù)測(cè))

27.(網(wǎng)格中小正方形的頂點(diǎn)稱為格點(diǎn)),下圖中,點(diǎn)4,B,C均為格點(diǎn),請(qǐng)用無(wú)刻度的直

尺依次完成下列畫圖,畫圖過(guò)程用虛線,畫圖結(jié)果用實(shí)線.

(1)在圖1中,先在48上畫點(diǎn)。,使tan//C£)=;,再在2c上畫點(diǎn)£,使tan/C4E=;;

(2)在圖2中,尸為8C與網(wǎng)格線的交點(diǎn),先畫平行四邊形NFMC,再在ZC上畫點(diǎn)使

ZABH=ZBAF.

(2023?湖北武漢?模擬預(yù)測(cè))

28.如圖是由小正方形組成的6x6網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫作格點(diǎn).的三個(gè)頂點(diǎn)

試卷第13頁(yè),共22頁(yè)

都是格點(diǎn),且22為半圓的直徑.僅用無(wú)刻度的直尺在給定網(wǎng)格中按要求完成畫圖,畫圖過(guò)

⑴在圖1中,先平移線段C8至4D處,畫出點(diǎn)。,再在C8上畫點(diǎn)E,使/ELC5;

(2)在圖2中,先在半圓上畫點(diǎn)R使=再在48上畫點(diǎn)G,使

AC=6AG-

(2023?浙江?一模)

29.如圖,在5x5的網(wǎng)格中,線段48的端點(diǎn)都在格點(diǎn)上(兩條網(wǎng)格線的交點(diǎn)叫格點(diǎn)).請(qǐng)

用無(wú)刻度的直尺畫出符合要求的圖形,并保留畫圖痕跡(不要求寫畫法).

(圖1)

(1)在圖1中畫出一個(gè)以為邊的RtZ\48C,使頂點(diǎn)C在格點(diǎn)上.

(2)在圖2中的線段N8上找出一點(diǎn)D,使絲=1.

AD2

(2023?江蘇無(wú)錫?二模)

30.如圖是由小正方形組成的9x6網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫作格點(diǎn),O3C的三個(gè)頂點(diǎn)

都是格點(diǎn),僅用無(wú)刻度的直尺在給定網(wǎng)格中完成畫圖.

試卷第14頁(yè),共22頁(yè)

(1)在圖1中,作出一個(gè)滿足條件的格點(diǎn)P,使得射線8P平分/22C;

(2)在圖2中,畫一個(gè)與。8C面積相等,且以NC為邊的口/CDE,D、E均在格點(diǎn)上;

(3)在圖3中,在NC邊上找一點(diǎn)連接使面積是ABCM面積的4倍.

題型6尺規(guī)作圖——作滿足條件的三角形

【知識(shí)要點(diǎn)與解題策略】

掌握幾個(gè)特殊三角形的幾何性質(zhì)

【典例分析】

例題.(2023?福建泉州?模擬預(yù)測(cè))

31.如圖,ZABC=70°,AB=BC.

(1)求作488及48?!?滿足△BCD為等邊三角形,/BCE=17Q°,其中/8=CE,點(diǎn)

D,£與點(diǎn)A在3c的同側(cè);(要求:尺規(guī)作圖,不寫作法,保留痕跡)

⑵在(1)的條件下,求/A4E的度數(shù).

【變式訓(xùn)練】

(22-23九年級(jí)上?福建福州?階段練習(xí))

32.如圖,點(diǎn)P是等邊三角形4BC內(nèi)一點(diǎn),連接尸/,PB,PC,將繞點(diǎn)2逆時(shí)針旋

轉(zhuǎn)60。得到△008,其中點(diǎn)尸的對(duì)應(yīng)點(diǎn)是。.

試卷第15頁(yè),共22頁(yè)

A

BC

(1)請(qǐng)畫出(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若AB=2,求P4+PB+PC的最小值.

(2023,山東濱州,中考真題)

33.(1)已知線段見〃,求作RtZk/BC,使得/。=90。,。4=加,。2=〃;(請(qǐng)用尺規(guī)作圖,

保留作圖痕跡,不寫作法.)

(2)求證:直角三角形斜邊上的中線等于斜邊的一半.(請(qǐng)借助上一小題所作圖形,在完善

的基礎(chǔ)上,寫出已知、求證與證明.)

?m?

?枕?

(2022?河南安陽(yáng)?模擬預(yù)測(cè))

34.閱讀材料:

我們?cè)?jīng)解決過(guò)如下問(wèn)題:“如圖,點(diǎn)M,N分別在直線同側(cè),如何在直線N8上找到

一個(gè)點(diǎn)尸,使得尸M+PN最小?”

我們可以經(jīng)過(guò)如下步驟解決這個(gè)問(wèn)題:

①畫草圖(或目標(biāo)圖)分析思路:在直線42上任取一點(diǎn)P,連接PM,PN,根據(jù)題目

需要,作點(diǎn)”關(guān)于直線48的對(duì)稱點(diǎn)AT,將PM+PN轉(zhuǎn)化為PM4PN,“化曲為直”尋

找PAT+PW的最小值;

②設(shè)計(jì)畫圖步驟;

③回答結(jié)論并驗(yàn)證.

試卷第16頁(yè),共22頁(yè)

借鑒閱讀材料中解決問(wèn)題的三個(gè)步驟完成以下尺規(guī)作圖:

已知三條線段〃,m,c,求作“8C,使其3c邊上的高/"=〃,中線40=加,

AB=c.

h記c

⑴請(qǐng)先畫草圖(畫出一個(gè)即可),并敘述簡(jiǎn)要的作圖思路(即實(shí)現(xiàn)目標(biāo)圖的大致作圖步驟);

(2)完成尺規(guī)作圖(不要求寫作法,作出一個(gè)滿足條件的三角形即可).

(2022?山西呂梁?三模)

35.初中階段有五種基本尺規(guī)作圖,分別是:①作一條線段等于已知線段;②作一個(gè)角等

于已知角;③作一個(gè)角的平分線;④作一條線段的垂直平分線;⑤過(guò)一點(diǎn)作已知直線的垂

線.

數(shù)學(xué)課上,老師出示了如下題目:如圖1,已知線段機(jī),機(jī)運(yùn)用尺規(guī)作圖畫出Rt4/BC,

使斜邊/8=加,一條直角邊/C=".

⑴如圖2是小亮所作的RdNBC,并保留了作圖痕跡.小亮的作圖過(guò)程用到的基本作圖有

____________;(填序號(hào))

(2)請(qǐng)你用一種與小亮不同的尺規(guī)作圖方法再作一個(gè)RtZX/BC,使?jié)M足上述條件.(不寫作法,

但保留作圖痕跡)

題型7尺規(guī)作圖——作滿足條件的四邊形

【知識(shí)要點(diǎn)與解題策略】

熟練掌握特殊四邊形的性質(zhì);

【典例分析】

例題.(2022?陜西西安?模擬預(yù)測(cè))

36.如圖,在中,AB=AC,在3c右側(cè)平面上求作一點(diǎn)M.使得四邊形/BMC是

試卷第17頁(yè),共22頁(yè)

菱形.(尺規(guī)作圖,保留作圖痕跡,不寫作法)

【變式訓(xùn)練】

(2021?江蘇?一模)

37.已知在四邊形N2CD中,尸是邊上一點(diǎn),且“DPs^pcB.分別在圖①和圖②中

用直尺和圓規(guī)作出所有滿足條件的點(diǎn)P.(保留作圖痕跡,不寫作法)

(1)如圖①,四邊形45。是矩形;

(2)如圖②,在四邊形48CD中,ND=NC=60。.

D

(23-24八年級(jí)下?江蘇鹽城?階段練習(xí))

38.實(shí)踐與操作:如圖,在〃/BCD中,AB=4,AD=6,AABC=60°,

圖1圖2

(1)尺規(guī)作圖:在圖1中作一個(gè)菱形,使得點(diǎn)42為所作菱形的兩個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在

的邊上;(保留作圖痕跡,不寫作法,注明所作四邊形名稱)

(2)尺規(guī)作圖:在圖2中作一個(gè)菱形,使點(diǎn)2、。為所作菱形的兩個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在

BCD中的邊上.(保留作圖痕跡,不寫作法,注明所作四邊形名稱)

(23-24九年級(jí)下?河南周口?階段練習(xí))

39.如圖,直線AB"CD,E是4B上一點(diǎn),尸是CD上一點(diǎn),連接,以尸為圓心E尸長(zhǎng)

試卷第18頁(yè),共22頁(yè)

為半徑畫弧,在點(diǎn)尸的右側(cè)交直線于點(diǎn)G,再分別以點(diǎn)E和點(diǎn)G為圓心,大于長(zhǎng)

2

為半徑畫弧,兩弧交于點(diǎn)連接交AB于點(diǎn)河,連接MG.

⑴使用直尺和圓規(guī),依作法補(bǔ)全圖形,判斷四邊形EAW的形狀;

⑵證明(1)中的結(jié)論.

(2024?陜西西安?二模)

40.如圖,已知“3C,在平面內(nèi)求作一點(diǎn)。,使得以N,B,C,。為頂點(diǎn)且以/C為對(duì)角

線的四邊形是平行四邊形.(保留作圖痕跡,不要求寫作法)

題型8尺規(guī)作圖一與圓有關(guān)的作圖

【知識(shí)要點(diǎn)與解題策略】

掌握與圓相關(guān)的幾個(gè)作圖:1.找圓心的方法;

2.過(guò)圓上一點(diǎn)作切線的方法;

3.過(guò)圓外一點(diǎn)作切線的方法;

【典例分析】

例題.(2023?浙江金華?一模)

41.如圖,點(diǎn)/、B、C在。。上且=AB1AC,請(qǐng)你利用直尺和圓規(guī),用三種不

同的方法,找到圓心。.(保留作圖痕跡)

【變式訓(xùn)練】

試卷第19頁(yè),共22頁(yè)

(2024?山東青島?一模)

42.已知:點(diǎn)尸和直線加

求作:以點(diǎn)尸為直角頂點(diǎn)的等腰直角三角形,使它的斜邊落在直線上,并在三角形內(nèi)部做出

以斜邊中點(diǎn)為圓心的面積最大的半圓O.

P.

---------------------------------------m

(2023?山東青島?三模)

43.已知:如圖,在“8C中,ZACB=90°.求作:。。,使圓心。在斜邊上,經(jīng)過(guò)點(diǎn)

8且與邊/C相切于點(diǎn)£.(用直尺、圓規(guī)作圖,不寫作法,但要保留作圖痕跡.)

(2023?江蘇宿遷?三模)

44.尺規(guī)作圖蘊(yùn)含豐富的推理,還體現(xiàn)逆向思維,請(qǐng)嘗試用無(wú)刻度的直尺和圓規(guī)完成下列作

圖,不寫作法,保留作圖痕跡.

C

(1)【圓的作圖】點(diǎn)尸是/A4c中48邊上的一點(diǎn),在圖1中作。。,使它與28/C的兩邊

相切,點(diǎn)尸是其中一個(gè)切點(diǎn);

⑵點(diǎn)尸是N3/C中N3邊上的一點(diǎn),在圖2中作使它滿足以下條件:

①圓心。在N8上;②經(jīng)過(guò)點(diǎn)尸;③與邊/C相切;

(3)【不可及點(diǎn)的作圖】如圖3,從墻E尸邊上引兩條不平行的射線£8、FC(交點(diǎn)在墻E尸

的另一側(cè),畫不到),作這兩條射線所形成角的平分線.

(2021?江蘇南京?中考真題)

試卷第20頁(yè),共22頁(yè)

45.如圖,已知尸是。。外一點(diǎn).用兩種不同的方法過(guò)點(diǎn)P作。O的一條切線.要求:

(1)用直尺和圓規(guī)作圖;

(2)保留作圖的痕跡,寫出必要的文字說(shuō)明.

題型9尺規(guī)作圖——與正多邊形有關(guān)的作圖

【知識(shí)要點(diǎn)與解題策略】

掌握幾種常見正多邊形的性質(zhì)和作圖方法:1.正三角形;

2.正方形;

3.正五邊形;

4.正六邊形;

【典例分析】

例題.(23-24九年級(jí)下?全國(guó)?隨堂練習(xí))

46.如圖,AB、CD是。。中互相垂直的兩條直徑,以點(diǎn)/為圓心,為半徑畫弧,與。。

(1)求證:ZE是正六邊形的一邊;

(2)請(qǐng)?jiān)趫D上繼續(xù)畫出這個(gè)正六邊形.

【變式訓(xùn)練】

(23-24九年級(jí)上?湖北武漢?階段練習(xí))

47.如圖,由小正方形構(gòu)成的6x6網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).僅用無(wú)刻度的

試卷第21頁(yè),共22頁(yè)

直尺在給定的網(wǎng)格中按要求作圖(保留作圖痕跡).

(1)在圖1中過(guò)P點(diǎn)作。。的切線PQ;

(2)在圖1中畫出一個(gè)圓內(nèi)接正方形/3C。;

(3)在圖2中的圓上畫出線段的中點(diǎn)£;

(4)在圖3中作一個(gè)30°的圓周角.

(2022?陜西?模擬預(yù)測(cè))

48.如圖,已知NC為的直徑.請(qǐng)用尺規(guī)作圖法,作出。。的內(nèi)接正方形A8CD.(保留

作圖痕跡.不寫作法)

試卷第22頁(yè),共22頁(yè)

1.D

【分析】本題考查作圖一基本作圖、線段垂直平分線的性質(zhì)、菱形的性質(zhì)、勾股定理.由作

圖可知,直線為線段的垂直平分線,則DE=CE=、CD,結(jié)合菱形的

2

性質(zhì),利用勾股定理計(jì)算即可.

【詳解】解::四邊形/BCD為菱形,

AD=AB=CD=4,AB//CD.

由作圖可知,直線"N為線段。的垂直平分線,

AE1CD,DE=CE=-CD=2,

2

在RQADE中,由勾股定理得,AE=>JAD2-DE2=742-22=273,

???AB//CD,

AE1AB,

ZEAB=90°.

在RtZ\4BE中,由勾股定理得,BE=y/AE2+AB2=7(273)2+42=277.

故選:D.

2.D

【分析】由作圖知CM=CD=DN,再利用圓周角定理、圓心角定理逐一判斷可得.

【詳解】解:由作圖知CM=CD=DN,

.-.ZCOM=ZCOD,故A選項(xiàng)正確;

???OM=ON=MN,

.?.△OMN是等邊三角形,

.-.ZMON=60°,

??-CM=CD=DN,

答案第1頁(yè),共49頁(yè)

.-.ZMOA=ZAOB=ZBON=|zMON=20°,故B選項(xiàng)正確;

???zMOA=zAOB=zBON,

180°-ZCOD

.-.ZOCD=ZOCM=-----------------

2

.-.ZMCD=180°-ZCOD,

XzCMN=-ZAON=ZCOD,

2

.-.ZMCD+ZCMN=18O°,

■?.MNIICD,故C選項(xiàng)正確;

???MC+CD+DN>MN,且CM=CD=DN,

.?.3CD>MN,故D選項(xiàng)錯(cuò)誤;

故選D.

【點(diǎn)睛】本題主要考查作圖-復(fù)雜作圖,解題的關(guān)鍵是掌握?qǐng)A心角定理和圓周角定理等知識(shí)

點(diǎn).

3.D

【分析】根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理可得==72。,再根據(jù)

題意可得:BC=DE,MN是AB的垂直平分線,從而可得。/=08,進(jìn)而可得

NA=NDBA=36。,然后利用角的和差關(guān)系可得乙08c=36。,從而利用三角形的外角性質(zhì)

可得NCDB=NACB=72°,進(jìn)而可得區(qū)D=8C,再根據(jù)等量代換可得8。=DE,從而可得

NDBE=NDEB=54。,進(jìn)而可得/C8E=18。,即可判斷A、B,然后證明ABCDSA/CB,

從而利用相似三角形的性質(zhì)可得?=/,即可判斷C,根據(jù)等腰三角形的性質(zhì)相似三角

ACCB

形的性質(zhì),可得烏=避二1即可判斷D.

DE2

【詳解】解:=4=36。,

NABC=NNC8=;(180。-NN)=72°,

由題意得:BC=DE,"N是AB的垂直平分線,

/.DA=DB,

:.ZA=ZDBA=36°,

ZDBC=/ABC-/DBA=36°,

/CDB=ZA+/DBA=72°,

ZCDB=ZACB=12°,

答案第2頁(yè),共49頁(yè)

BD=BC,

AD=DB=BC=DE,故A正確;

???BD=DE,

/DBE=/DEB=1(180°-ZCDB)=54°,

/.ZCBE=/DBE-ZDBC=18°,

/.ZCBE=-ZA,故B正確;

2

vZCBD=ZA=36°,ZDCB=ZACB,

:ABCDS-CB,

.BCCD

\4C~CBf

BC2=ACCD,故C正確;

設(shè)4D=l,CQ=x,貝|/C=l+x,BC=DB=AD=1

1=(l+x)x

解得:X=^~—1(負(fù)值舍去)

2

又?:DE=BC=1

「布Tr-

CFoJs-1

7方-―/=——--"-,故D選項(xiàng)錯(cuò)誤,

CD75—12

2

故選:D.

【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與判定,等腰的性質(zhì),作垂直平分線,線段垂直平分

線的性質(zhì),等腰三角形的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.

4.A

【分析】利用三角形中位線定理以及線段的垂直平分線的性質(zhì)求解.

【詳解】解:由作圖可知EF垂直平分線段3C,垂直平分線段C。,

OB=OC,DN=CN,

:.ON=-BD,

2

???AB=9,AC=AD=5,

.-.BD=AB-AD=9-5=4,

答案第3頁(yè),共49頁(yè)

..?ON」X4=2.

2

故選:A.

【點(diǎn)睛】本題考查作圖-基本作圖,三角形中位線定理,線段的垂直平分線的性質(zhì)等知識(shí),

解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.

5.D

【分析】本題主要考查了求角的正切值,角平分線的性質(zhì),勾股定理等等,先利用勾股定理

求出4D=VL4C,由角平分線的性質(zhì)和定義得到瓦7=CE,/DAE=NCAE.再利用等面

積法求出空=1二L即可得到答案.

AC2

【詳解】解:如圖所示,過(guò)點(diǎn)、E作EFJ.4D于F,

由題意得,CD=AB=2AC,ZACD=90°,

AD=yjAC2+CD2=45AC,

?.?/E平分/OLD,EF1AD,/4CD=90°,

;.EF=CE,NDAE=NCAE.

???^^ACD=S"DE+S&ACE,

.-.-ADEF+-AC-CE^-AC-CD,

222

■--CE-AC+-AC-CE=AC-AC,

22

.CE2V5-1

"^C~4s+\~2

CF-K/S-1

???tanNZME=tanNCAE==-------,

AC2

故選:D.

答案第4頁(yè),共49頁(yè)

3

6.-##1.5

2

【分析】如圖,過(guò)點(diǎn)〃作于點(diǎn)/,由作法可知,8為/ZCQ的平分線,

DH=MH,AB=CD=3,AD=BC=4,由勾股定理得,AC=yjAD2+CD2=5,由

S.ACD=S“CH+S.CDH,可得=+即

1x4x3=-x5xDJ7+-x3xZ)//,計(jì)算求解即可.

222

【詳解】解:如圖,過(guò)點(diǎn)7/作〃ML/C于點(diǎn)

由作法可知,S為//CD的平分線,

???四邊形ZBCQ為矩形,

.??/。=90。,AD=BC,

???DH=MH,

vD(2,3),

AB=CD=3,AD=BC=A,

由勾股定理得,AC=y/AD2+CD2=5,

VS^ACD=S^ACH+S^CDH,

:.-ADCD=-AC^MH+-CDDH1gp-x4x3=-x5xD//+-x3x£>7/,

222222

3

解得。〃二2,

.、3

故答案為:—.

【點(diǎn)睛】本題考查作角平分線,角平分線的性質(zhì),矩形的性質(zhì),勾股定理.熟練掌握角平分

線的性質(zhì)與作圖方法、矩形的性質(zhì)是解答本題的關(guān)鍵.

7.12

【分析】根據(jù)作圖過(guò)程可得/P是的垂直平分線,可得出=根據(jù)外角的性質(zhì)以

答案第5頁(yè),共49頁(yè)

及N8=2NC,即可得出NC=NQ4C,AD=CD=13f最后根據(jù)勾股定理可得4石的長(zhǎng).

【詳解】解:連接

由作圖過(guò)程可得AP是BD的垂直平分線,

AD=AD,ZAED=90°,

???/ABD=AADB,

???/B=2ZC,

??./ADB=2ZC,

?:ZADB=ZC+ZDAC,

??.ZC=ZDAC,

.?.AD=CD=13,

.?.BD=BC-CD=23-13=10f

BE=ED=5,

AE=ylAD--ED-=V132-52=12.

故答案為:12.

【點(diǎn)睛】本題主要考查了作圖-復(fù)雜作圖、勾股定理,等腰三角形的性質(zhì),解決本題的關(guān)鍵

是熟練掌握線段垂直平分線的性質(zhì).

8.6

【分析】根據(jù)題意可得為N2的垂直平分線,根據(jù)/b=/E-cos30。求出斯的長(zhǎng)度,即

可得出N8=2/F=2百,過(guò)點(diǎn)3作于點(diǎn)G,即可根據(jù)3G=/3-sin30。求出8G的

長(zhǎng)度,最后根據(jù)菱形的面積公式,即可求解.

【詳解】解:根據(jù)作圖可得為N3的垂直平分線,

???ZTI=30°,AE=2,

■■AF=AE-cos300=2x—=y/j,

2

?-.AB=2AF=2G,

答案第6頁(yè),共49頁(yè)

過(guò)點(diǎn)8作于點(diǎn)G,

■■BG=AB-sm30°=^,

?.,四邊形/BCD為菱形,

AD=AB=26,

二菱形ABCD的面積=ADxBG=2y/3x43=6

故答案為:6.

【點(diǎn)睛】本題考查了菱形的性質(zhì),及垂直平分線的性質(zhì),解直角三角形,解題的關(guān)鍵是熟練

掌握解直角三角形的方法和步驟,菱形的四邊相等,垂直平分線到兩端距離相等.

9.1

【分析】根據(jù)作圖可得4D為NC48的角平分線,根據(jù)角平分線的性質(zhì)即可求解.

【詳解】解:如圖所示,過(guò)點(diǎn)。作DE工48于點(diǎn)E,依題意?!?1,

C

■.■DC1AC,DE1AB

:.CD=DE=\,

故答案為:1.

【點(diǎn)睛】本題考查了作角平分線,角平分線的性質(zhì),熟練掌握基本作圖以及角平分線的性質(zhì)

是解題的關(guān)鍵.

10.30

答案第7頁(yè),共49頁(yè)

【分析】先利用基本作圖得再根據(jù)平行四邊形的性質(zhì)和平行線

的性質(zhì)得到NBAD=180。-N8=60°,從而得到ZEAD=30°.

【詳解】解:由作法得/E平分484D,

ZEAB=ZEAD=-ABAD,

2

???四邊形Z5C。為平行四邊形,

AD//BC,

ZB+ZBAD=1SO°,

Z^0=180°-120°=60°,

:.ZEAD=-ZBAD=30°.

2

故答案為:30.

【點(diǎn)睛】本題考查了尺規(guī)作角平分線,平行四邊形的性質(zhì),熟練掌握基本作圖是解題的關(guān)

鍵.

11.(1)作圖見解析

(2)作圖見解析

【分析】(1)如圖,取格點(diǎn)K,使//K8=90。,在K的左上方的格點(diǎn)C滿足條件,再畫三

角形即可;

(2)利用小正方形的性質(zhì)取格點(diǎn)連接交于。,從而可得答案.

【詳解】(1)解:如圖,即為所求作的三角形;

圖1

(2)如圖,。即為所求作的點(diǎn);

答案第8頁(yè),共49頁(yè)

圖2

【點(diǎn)睛】本題考查的是復(fù)雜作圖,同時(shí)考查了三角形的外角的性質(zhì),正方形的性質(zhì),垂線段

最短,熟記基本幾何圖形的性質(zhì)再靈活應(yīng)用是解本題的關(guān)鍵.

12.(1)見解析

⑵見解析

(3)見解析

【分析】(1)利用正方形的性質(zhì)確定點(diǎn)C,即可得到

(2)以N8為腰,作等腰直角三角形即為所求(答案不唯一);

(3)取格點(diǎn)M、N,連接兒根據(jù)相似三角形的相似比確定點(diǎn)E,即為所求.

【詳解】(1)解:如圖①,為所求(答案不唯一);

圖①

(2)解:如圖②,為所求(答案不唯一);

圖②

(3)取格點(diǎn)以N,連接AW,根據(jù)相似三角形的相似比確定點(diǎn)E,"BE即為所求.

解:如圖③,為所求(答案不唯一).

答案第9頁(yè),共49頁(yè)

M.

I

L__l___L_J

E\\

J■

-

1

圖③

【點(diǎn)睛】本題考查了作圖一軸對(duì)稱變換,正方形的性質(zhì),等腰直角三角形的判定和性質(zhì),

相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問(wèn)

題,屬于中考??碱}型.

13.(1)見解析

(2)見解析

【分析】(1)利用數(shù)形結(jié)合的思想構(gòu)造全等三角形或等腰直角三角形解決問(wèn)題即可.

(2)構(gòu)造矩形或梯形即可解決問(wèn)題.

【詳解】(1)參考圖如下.

(2)參考圖如下.

答案第10頁(yè),共49頁(yè)

【點(diǎn)睛】本題考查了作圖-應(yīng)用與設(shè)計(jì),勾股定理,全等三角形的判定與性質(zhì),解題的關(guān)鍵

是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問(wèn)題.

14.(1)見詳解

(2)見詳解

(3)見詳解

【分析】(1)以42為底,根據(jù)面積可確定高,即可求作;

(2)以N8為一邊,作出矩形即可;

(3)取4W=2,BN=\,連接ACV交48于尸,即可求作.

【詳解】(1)

圖①

解:如圖,“BC為所求作(答案不唯一).

(2)

ED

A\\\\\B

IIIII

IIIII

IIIII

「圖豆

答案第11頁(yè),共49頁(yè)

解:如圖,矩形/BOE為所求作(答案不唯一).

(3)

M'''''''''

k__4---411I?

I..................................................................................................

I.........................................................................................

IL,」I?II

A:\\B\

圖③

解:如圖,取NM=2,BN=1,

連接肱V交于尸,

1.?AAMPS^BNP,

.ApAM1

,?茄一前一5’

AP=IBP,

點(diǎn)為所求作.

【點(diǎn)睛】本題考查了根據(jù)要求作圖,掌握?qǐng)D形特征,找出作法是解題的關(guān)鍵.

15.(1)見解析

(2)見解析

(3)見解析

【分析】(1)畫一個(gè)底邊是3,高為2的三角形即可,

(2)畫一個(gè)底邊是3,高為2的平行四邊形即可,

(3)以42=石為邊作矩形,面積為4,則/〃=^石,作一條線段等于月/=逐,而且

AM1AB,利用平行線分線段成比例定理,構(gòu)造相似三角形使相似比為1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論