版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省吉林市示范中學(xué)高三下學(xué)期第三次月考數(shù)學(xué)試題理試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件2.已知角的終邊經(jīng)過點(diǎn),則的值是A.1或 B.或 C.1或 D.或3.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.4.若直線與曲線相切,則()A.3 B. C.2 D.5.大衍數(shù)列,米源于我國古代文獻(xiàn)《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.6.已知雙曲線:(,)的右焦點(diǎn)與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.37.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則()A.2 B.3 C.-2 D.-38.在直角中,,,,若,則()A. B. C. D.9.已知隨機(jī)變量滿足,,.若,則()A., B.,C., D.,10.若是定義域?yàn)榈钠婧瘮?shù),且,則A.的值域?yàn)?B.為周期函數(shù),且6為其一個(gè)周期C.的圖像關(guān)于對稱 D.函數(shù)的零點(diǎn)有無窮多個(gè)11.已知,則的大小關(guān)系是()A. B. C. D.12.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為_________.14.已知函數(shù),則下列結(jié)論中正確的是_________.①是周期函數(shù);②的對稱軸方程為,;③在區(qū)間上為增函數(shù);④方程在區(qū)間有6個(gè)根.15.為了了解一批產(chǎn)品的長度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進(jìn)行檢測,如圖是檢測結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為__________.16.若正三棱柱的所有棱長均為2,點(diǎn)為側(cè)棱上任意一點(diǎn),則四棱錐的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.18.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若對恒成立,求的取值范圍.19.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.20.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.21.(12分)已知,其中.(1)當(dāng)時(shí),設(shè)函數(shù),求函數(shù)的極值.(2)若函數(shù)在區(qū)間上遞增,求的取值范圍;(3)證明:.22.(10分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.2.B【解析】
根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時(shí),,∴,∴.②當(dāng)時(shí),,∴,∴.綜上可得的值是或.故選B.利用三角函數(shù)的定義求一個(gè)角的三角函數(shù)值時(shí)需確定三個(gè)量:角的終邊上任意一個(gè)異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.3.B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.4.A【解析】
設(shè)切點(diǎn)為,對求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點(diǎn)斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點(diǎn)為,∵,∴由①得,代入②得,則,,故選A.該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點(diǎn)有導(dǎo)數(shù)的幾何意義,直線方程的點(diǎn)斜式,屬于簡單題目.5.B【解析】
直接代入檢驗(yàn),排除其中三個(gè)即可.【詳解】由題意,排除D,,排除A,C.同時(shí)B也滿足,,,故選:B.本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解.6.A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因?yàn)閳A被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運(yùn)算能力,是一道容易題.7.B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因?yàn)?,所以所以,又也在直線上,所以,解得所以.故選:B本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對這些知識的理解掌握水平.8.C【解析】
在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡計(jì)算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.9.B【解析】
根據(jù)二項(xiàng)分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)殡S機(jī)變量滿足,,.所以服從二項(xiàng)分布,由二項(xiàng)分布的性質(zhì)可得:,因?yàn)?,所以,由二次函?shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B本題主要考查二項(xiàng)分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.10.D【解析】
運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域?yàn)榈钠婧瘮?shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點(diǎn)有無窮多個(gè);因?yàn)椋?,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.11.B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.12.C【解析】
A:否命題既否條件又否結(jié)論,故A錯(cuò).B:由正弦定理和邊角關(guān)系可判斷B錯(cuò).C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯(cuò).【詳解】解:A:“若,則”的否命題是“若,則”,故A錯(cuò).B:在中,,故“”是“”成立的必要充分條件,故B錯(cuò).C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯(cuò).故選:C考查判斷命題的真假,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】14.①②④【解析】
由函數(shù),對選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】函數(shù),是周期函數(shù),最小正周期為,故①正確;當(dāng)或時(shí),有最大值或最小值,此時(shí)或,即或,即.的對稱軸方程為,,故②正確;當(dāng)時(shí),,此時(shí)在上單調(diào)遞減,在上單調(diào)遞增,在區(qū)間上不是增函數(shù),故③錯(cuò)誤;作出函數(shù)的部分圖象,如圖所示方程在區(qū)間有6個(gè)根,故④正確.故答案為:①②④.本題考查三角恒等變換,考查三角函數(shù)的性質(zhì),屬于中檔題.15.100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點(diǎn)睛:頻率分布直方圖的縱坐標(biāo)為,因此每一個(gè)小矩形的面積表示樣本個(gè)體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時(shí)常犯的錯(cuò)誤.16.【解析】
依題意得,再求點(diǎn)到平面的距離為點(diǎn)到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點(diǎn)到平面的距離為點(diǎn)到直線的距離所以,所以.故答案為:本題考查椎體的體積公式,考查運(yùn)算能力,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),,,當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點(diǎn),在區(qū)間和上各存在一個(gè)零點(diǎn).綜上所述,函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點(diǎn),所以,函數(shù)在區(qū)間與上各存在一個(gè)極值點(diǎn)、,且,,且滿足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問題,同時(shí)也考查了利用導(dǎo)數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.18.(1)或;(2)或.【解析】試題分析:(1)根據(jù)絕對值定義將不等式化為三個(gè)不等式組,分別求解集,最后求并集(2)根據(jù)絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價(jià)于或或,解得:或.故不等式的解集為或.(2)因?yàn)椋核?,由題意得:,解得或.點(diǎn)睛:含絕對值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.19.(1),(2)0【解析】
(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及此時(shí)的幾何意義求解.【詳解】(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即.(2)把為參數(shù))代入,得.,..解得:,即,滿足△..本題考查參數(shù)方程化普通方程,特別是直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用,是中檔題.20.(Ⅰ)證明見解析;(Ⅱ)【解析】
(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.21.(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出;(2)先求導(dǎo),再函數(shù)在區(qū)間上遞增,分離參數(shù),構(gòu)造函數(shù),求出函數(shù)的最值,問題得以解決;(3)取得到,取,可得,累加和根據(jù)對數(shù)的運(yùn)算性和放縮法即可證明.【詳解】解:(1)當(dāng)時(shí),設(shè)函數(shù),則令,解得當(dāng)時(shí),,當(dāng)時(shí),所以在上單調(diào)遞增,在上單調(diào)遞減所以當(dāng)時(shí),函數(shù)取得極大值,即極大值為,無極小值;(2)因?yàn)?,所以,因?yàn)樵趨^(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當(dāng)時(shí),在區(qū)間上恒成立,當(dāng)時(shí),,設(shè),則在區(qū)間上恒成立.所以在單調(diào)遞增,則,所以,即綜上所述.(3)由(2)可知當(dāng)時(shí),函數(shù)在區(qū)間上遞增,所以,即,取,則.所以所以此題考查了參數(shù)的取值范圍以及恒成立的問題,以及不等式的證明,構(gòu)造函數(shù)是關(guān)鍵,屬于較難題.22.(1)為增區(qū)間;為減區(qū)間.見解析(2)見解析【解析】
(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點(diǎn)存在性定理判斷出有唯一零點(diǎn).(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過證明,證得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年空運(yùn)中介貨物合同
- 2024建設(shè)項(xiàng)目監(jiān)管與服務(wù)協(xié)議一
- 專業(yè)仿真綠植訂購協(xié)議2024版版B版
- 2025年度全國重點(diǎn)工程安全員專項(xiàng)聘用合同3篇
- 2025采礦權(quán)轉(zhuǎn)讓合同示范文本:礦業(yè)權(quán)整合項(xiàng)目3篇
- 2024建設(shè)工程合同講義
- 專業(yè)婚介機(jī)構(gòu)服務(wù)合同2024版版B版
- 2024年食品原材料長期供應(yīng)合同3篇
- 2025年玻璃幕墻工程勞務(wù)分包及售后服務(wù)協(xié)議3篇
- 2024攝影工作室產(chǎn)品攝影及電商平臺推廣合作合同3篇
- 退化林修復(fù)投標(biāo)方案
- 貴陽市南明區(qū)2023-2024學(xué)年四年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含答案
- 第六單元大單元教學(xué)設(shè)計(jì)統(tǒng)編版語文八年級上冊
- 盤古神話中英文版
- 車輛移交安全協(xié)議書
- 辦公室換崗后的心得體會辦公室輪崗心得體會總結(jié)(二篇)
- 提高混凝土外觀質(zhì)量-QC小組活動成果交流材料(建設(shè))
- 影像敘事語言智慧樹知到答案章節(jié)測試2023年中國傳媒大學(xué)
- 流體力學(xué)(清華大學(xué)張兆順54講) PPT課件 1
- 銷售人員末位淘汰制度
- 南陽石油分公司非油品業(yè)務(wù)經(jīng)營管理制度概要
評論
0/150
提交評論