2022年畢節(jié)市重點中學(xué)中考數(shù)學(xué)押題試卷含解析_第1頁
2022年畢節(jié)市重點中學(xué)中考數(shù)學(xué)押題試卷含解析_第2頁
2022年畢節(jié)市重點中學(xué)中考數(shù)學(xué)押題試卷含解析_第3頁
2022年畢節(jié)市重點中學(xué)中考數(shù)學(xué)押題試卷含解析_第4頁
2022年畢節(jié)市重點中學(xué)中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年畢節(jié)市重點中學(xué)中考數(shù)學(xué)押題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.四根長度分別為3,4,6,x(x為正整數(shù))的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為162.某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“古詩詞”大賽,各參賽選手成績的數(shù)據(jù)分析如表所示,則以下判斷錯誤的是()班級平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績比八(1)班穩(wěn)定C.兩個班的最高分在八(2)班D.八(2)班的成績集中在中上游3.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉(zhuǎn),得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據(jù)是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形4.當(dāng)x=1時,代數(shù)式x3+x+m的值是7,則當(dāng)x=﹣1時,這個代數(shù)式的值是()A.7 B.3 C.1 D.﹣75.等式組的解集在下列數(shù)軸上表示正確的是(

).A.

B.C.

D.6.一、單選題點P(2,﹣1)關(guān)于原點對稱的點P′的坐標(biāo)是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)7.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.8.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.259.據(jù)統(tǒng)計,2018年全國春節(jié)運輸人數(shù)約為3000000000人,將3000000000用科學(xué)記數(shù)法表示為()A.0.3×1010B.3×109C.30×108D.300×10710.如果關(guān)于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.12.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應(yīng)的度數(shù)為65°,那么在大量角器上對應(yīng)的度數(shù)為_____度(只需寫出0°~90°的角度).13.如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標(biāo)分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當(dāng)點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.14.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.15.有5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機(jī)抽取2張,抽出的卡片上的數(shù)字恰好是兩個連續(xù)整數(shù)的概率是__.16.分解因式:8x2-8xy+2y2=_________________________.17.如圖,AB是圓O的直徑,AC是圓O的弦,AB=2,∠BAC=30°.在圖中畫出弦AD,使AD=1,則∠CAD的度數(shù)為_____°.三、解答題(共7小題,滿分69分)18.(10分)已知關(guān)于的一元二次方程.試證明:無論取何值此方程總有兩個實數(shù)根;若原方程的兩根,滿足,求的值.19.(5分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標(biāo);(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標(biāo).20.(8分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.21.(10分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.22.(10分)如圖,在Rt△ABC中,∠C=90°,AB的垂直平分線交AC于點D,交AB于點E.(1)求證:△ADE~△ABC;(2)當(dāng)AC=8,BC=6時,求DE的長.23.(12分)如圖,在Rt△ABC中,,點在邊上,⊥,點為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.24.(14分)已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.求一次函數(shù)和反比例函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出不等式kx+b﹣>0的解集.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

首先寫出所有的組合情況,再進(jìn)一步根據(jù)三角形的三邊關(guān)系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進(jìn)行分析.【詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當(dāng)三邊為3、4、1時,其周長為3+4+1=13;②當(dāng)x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當(dāng)x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【點睛】本題考查的是三角形三邊關(guān)系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關(guān)鍵.2、C【解析】

直接利用表格中數(shù)據(jù),結(jié)合方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù)得出答案.【詳解】A選項:八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;

B選項:八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;

C選項:兩個班的最高分無法判斷出現(xiàn)在哪個班,錯誤;

D選項:八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績集中在中上游,正確;

故選C.【點睛】考查了方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關(guān)鍵.3、A【解析】

根據(jù)翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據(jù)菱形的判定推出即可.【詳解】∵

△ABC

延底邊

BC

翻折得到

△DBC

,∴AB=BD

AC=CD

,∵AB=AC

,∴AB=BD=CD=AC

,∴

四邊形

ABDC

是菱形;故選A.【點睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.4、B【解析】

因為當(dāng)x=1時,代數(shù)式的值是7,所以1+1+m=7,所以m=5,當(dāng)x=-1時,=-1-1+5=3,故選B.5、B【解析】【分析】分別求出每一個不等式的解集,然后在數(shù)軸上表示出每個不等式的解集,對比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【點睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.6、A【解析】

根據(jù)“關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)”解答.【詳解】解:點P(2,-1)關(guān)于原點對稱的點的坐標(biāo)是(-2,1).故選A.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).7、B【解析】

將A、B、C、D分別展開,能和原圖相對應(yīng)的即為正確答案:【詳解】A、展開得到,不能和原圖相對應(yīng),故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應(yīng),故本選項錯誤;D、展開得到,不能和原圖相對應(yīng),故本選項錯誤.故選B.8、C【解析】

先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進(jìn)而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.9、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).【詳解】解:根據(jù)科學(xué)計數(shù)法的定義可得,3000000000=3×109,故選擇B.【點睛】本題考查了科學(xué)計數(shù)法的定義,確定n的值是易錯點.10、D【解析】

由被開方數(shù)非負(fù)結(jié)合根的判別式△≥0,即可得出關(guān)于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當(dāng)△≥0時,方程有實數(shù)根”是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

先由DE∥BC,可證得△ADE∽△ABC,進(jìn)而可根據(jù)相似三角形得到的比例線段求得BC的長.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點睛】考查了相似三角形的性質(zhì)和判定,關(guān)鍵是求出相似后得出比例式,在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.12、1.【解析】

設(shè)大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應(yīng)的度數(shù)為1°.故答案為1.13、1【解析】

先根據(jù)勾股定理求得AC的長,從而得到C點坐標(biāo),然后根據(jù)平移的性質(zhì),將C點縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標(biāo)為(﹣1,1).當(dāng)y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【點睛】本題主要考查平移的性質(zhì),解此題的關(guān)鍵在于先利用勾股定理求得相關(guān)點的坐標(biāo),然后根據(jù)平移的性質(zhì)將其縱坐標(biāo)代入直線函數(shù)式求解即可.14、2【解析】

解:這組數(shù)據(jù)的平均數(shù)為2,

有(2+2+0-2+x+2)=2,

可求得x=2.

將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個數(shù)是2與2,

其平均數(shù)即中位數(shù)是(2+2)÷2=2.

故答案是:2.15、【解析】

列表得出所有等可能的情況數(shù),找出恰好是兩個連續(xù)整數(shù)的情況數(shù),即可求出所求概率.【詳解】解:列表如下:567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情況有20種,其中恰好是兩個連續(xù)整數(shù)的情況有8種,則P(恰好是兩個連續(xù)整數(shù))=故答案為.【點睛】此題考查了列表法與樹狀圖法,概率=所求情況數(shù)與總情況數(shù)之比.16、1【解析】

提取公因式1,再對余下的多項式利用完全平方公式繼續(xù)分解.完全平方公式:a1±1ab+b1=(a±b)1.【詳解】8x1-8xy+1y2=1(4x1-4xy+y2)=1(1x-y)1.故答案為:1(1x-y)1【點睛】此題考查的是提取公因式法和公式法分解因式,本題關(guān)鍵在于提取公因式可以利用完全平方公式進(jìn)行二次因式分解.17、30或1.【解析】

根據(jù)題意作圖,由AB是圓O的直徑,可得∠ADB=∠AD′B=1°,繼而可求得∠DAB的度數(shù),則可求得答案.【詳解】解:如圖,∵AB是圓O的直徑,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度數(shù)為:30°或1°.故答案為30或1.【點睛】本題考查圓周角定理;含30度角的直角三角形.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實數(shù)根;(2)根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=5、x1x2=6-p2-p,結(jié)合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實數(shù)根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點睛:本題考查了根與系數(shù)的關(guān)系以及根的判別式,解題的關(guān)鍵是:(1)牢記“當(dāng)△≥1時,方程有兩個實數(shù)根”;(2)根據(jù)根與系數(shù)的關(guān)系結(jié)合x12+x22-x1x2=3p2+1,求出p值.19、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標(biāo).【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運用數(shù)形結(jié)合思想是解題的關(guān)鍵.20、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】

(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當(dāng)60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當(dāng)60°<α≤110°時,如圖3中,作∠AB

D′=∠ABD,B

D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當(dāng)60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質(zhì).等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.21、(1)4﹣5;﹣<x≤2,在數(shù)軸上表示見解析【解析】

(1)此題涉及乘方、特殊角的三角函數(shù)、負(fù)整數(shù)指數(shù)冪和二次根式的化簡,首先針對各知識點進(jìn)行計算,再計算實數(shù)的加減即可;(2)首先解出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數(shù)軸上表示為:.【點睛】此題主要考查了解一元一次不等式組,以實數(shù)的運算,關(guān)鍵是正確確定兩個不等式的解集,掌握特殊角的三角函數(shù)值.22、(1)見解析;(2).【解析】

(1)根據(jù)兩角對應(yīng)相等,兩三角形相似即可判定;(2)利用相似三角形的性質(zhì)即可解決問題.【詳解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論