2025屆上海市松江區(qū)高三第二學(xué)期期末四校聯(lián)考數(shù)學(xué)試題含解析_第1頁(yè)
2025屆上海市松江區(qū)高三第二學(xué)期期末四校聯(lián)考數(shù)學(xué)試題含解析_第2頁(yè)
2025屆上海市松江區(qū)高三第二學(xué)期期末四校聯(lián)考數(shù)學(xué)試題含解析_第3頁(yè)
2025屆上海市松江區(qū)高三第二學(xué)期期末四校聯(lián)考數(shù)學(xué)試題含解析_第4頁(yè)
2025屆上海市松江區(qū)高三第二學(xué)期期末四校聯(lián)考數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆上海市松江區(qū)高三第二學(xué)期期末四校聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.42.函數(shù)圖象的大致形狀是()A. B.C. D.3.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.4.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列不等式正確的是()A. B.C. D.6.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.7.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.88.設(shè),是方程的兩個(gè)不等實(shí)數(shù)根,記().下列兩個(gè)命題()①數(shù)列的任意一項(xiàng)都是正整數(shù);②數(shù)列存在某一項(xiàng)是5的倍數(shù).A.①正確,②錯(cuò)誤 B.①錯(cuò)誤,②正確C.①②都正確 D.①②都錯(cuò)誤9.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.10.已知無(wú)窮等比數(shù)列的公比為2,且,則()A. B. C. D.11.已知在中,角的對(duì)邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.12.已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn),在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在長(zhǎng)方體中,已知棱長(zhǎng),體對(duì)角線,兩異面直線與所成的角為,則該長(zhǎng)方體的表面積是____________.14.拋物線的焦點(diǎn)坐標(biāo)為_(kāi)_____.15.已知圓C:經(jīng)過(guò)拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長(zhǎng)是__________.16.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對(duì),恒成立,求的取值范圍.18.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長(zhǎng).19.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.20.(12分)某景點(diǎn)上山共有級(jí)臺(tái)階,寓意長(zhǎng)長(zhǎng)久久.甲上臺(tái)階時(shí),可以一步走一個(gè)臺(tái)階,也可以一步走兩個(gè)臺(tái)階,若甲每步上一個(gè)臺(tái)階的概率為,每步上兩個(gè)臺(tái)階的概率為.為了簡(jiǎn)便描述問(wèn)題,我們約定,甲從級(jí)臺(tái)階開(kāi)始向上走,一步走一個(gè)臺(tái)階記分,一步走兩個(gè)臺(tái)階記分,記甲登上第個(gè)臺(tái)階的概率為,其中,且.(1)若甲走步時(shí)所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過(guò)程中,恰好登上第級(jí)臺(tái)階的概率.21.(12分)已知雙曲線及直線.(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;(2)若l與C交于A,B兩點(diǎn),O是原點(diǎn),且,求實(shí)數(shù)k的值.22.(10分)已知函數(shù)(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.2.B【解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因?yàn)?,所以,所以函?shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.本題考查函數(shù)表達(dá)式判斷函數(shù)圖像,屬于中檔題.3.A【解析】

求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)?,故可得,令,因?yàn)?,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.4.A【解析】

由復(fù)數(shù)的除法運(yùn)算可整理得到,由此得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),從而確定所處象限.【詳解】由得:,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:.本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在象限的求解,涉及到復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.5.D【解析】

根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問(wèn)題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.6.B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過(guò)點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.7.D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒(méi)有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.8.A【解析】

利用韋達(dá)定理可得,,結(jié)合可推出,再計(jì)算出,,從而推出①正確;再利用遞推公式依次計(jì)算數(shù)列中的各項(xiàng),以此判斷②的正誤.【詳解】因?yàn)?是方程的兩個(gè)不等實(shí)數(shù)根,所以,,因?yàn)?所以,即當(dāng)時(shí),數(shù)列中的任一項(xiàng)都等于其前兩項(xiàng)之和,又,,所以,,,以此類推,即可知數(shù)列的任意一項(xiàng)都是正整數(shù),故①正確;若數(shù)列存在某一項(xiàng)是5的倍數(shù),則此項(xiàng)個(gè)位數(shù)字應(yīng)當(dāng)為0或5,由,,依次計(jì)算可知,數(shù)列中各項(xiàng)的個(gè)位數(shù)字以1,3,4,7,1,8,9,7,6,3,9,2為周期,故數(shù)列中不存在個(gè)位數(shù)字為0或5的項(xiàng),故②錯(cuò)誤;故選:A.本題主要考查數(shù)列遞推公式的推導(dǎo),考查數(shù)列性質(zhì)的應(yīng)用,考查學(xué)生的綜合分析以及計(jì)算能力.9.D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.10.A【解析】

依據(jù)無(wú)窮等比數(shù)列求和公式,先求出首項(xiàng),再求出,利用無(wú)窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳?yàn)闊o(wú)窮等比數(shù)列的公比為2,則無(wú)窮等比數(shù)列的公比為。由有,,解得,所以,,故選A。本題主要考查無(wú)窮等比數(shù)列求和公式的應(yīng)用。11.C【解析】

求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.12.C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進(jìn)而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因?yàn)?在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C本題主要考查了橢圓的定義運(yùn)用以及構(gòu)造齊次式求橢圓的離心率的問(wèn)題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.10【解析】

作出長(zhǎng)方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長(zhǎng)方體的表面積為.14.【解析】

變換得到,計(jì)算焦點(diǎn)得到答案.【詳解】拋物線的標(biāo)準(zhǔn)方程為,,所以焦點(diǎn)坐標(biāo)為.故答案為:本題考查了拋物線的焦點(diǎn)坐標(biāo),屬于簡(jiǎn)單題.15.【解析】

求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長(zhǎng)的一半,進(jìn)而求出弦長(zhǎng).【詳解】拋物線E:的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長(zhǎng).本題考查了拋物線的準(zhǔn)線、圓的弦長(zhǎng)公式.16.-2【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)①當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),在上單調(diào)遞增;(2).【解析】

(1)求出函數(shù)的定義域和導(dǎo)函數(shù),,對(duì)討論,得導(dǎo)函數(shù)的正負(fù),得原函數(shù)的單調(diào)性;(2)法一:由得,分別運(yùn)用導(dǎo)函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域?yàn)?,,①?dāng)時(shí),由得,得,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),恒成立,在上單調(diào)遞增;(2)法一:由得,令(),則,在上單調(diào)遞減,,,即,令,則,在上單調(diào)遞增,,在上單調(diào)遞減,所以,即,(*)當(dāng)時(shí),,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調(diào)遞減,,,即,當(dāng)時(shí),由(Ⅰ)知在上單調(diào)遞增,恒成立,滿足題意當(dāng)時(shí),令,則,所以在上單調(diào)遞減,又,當(dāng)時(shí),,,使得,當(dāng)時(shí),,即,又,,,不滿足題意,綜上所述,的取值范圍是本題考查對(duì)于含參數(shù)的函數(shù)的單調(diào)性的討論,不等式恒成立時(shí),求解參數(shù)的范圍,屬于難度題.18.(Ⅰ)見(jiàn)解析;(Ⅱ)【解析】

(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過(guò)作,則平面,即點(diǎn)到平面的距離,由是中點(diǎn),得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過(guò)作,則平面,即點(diǎn)到平面的距離,因?yàn)槭侵悬c(diǎn),所以為到平面的距離,因?yàn)榕c平面所成的角的正弦值為,即,解得.本題主要考查線面垂直的判定定理,線面角的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象運(yùn)算求解的能力,屬于中檔題.19.(1);(2)證明見(jiàn)解析【解析】

(1)利用零點(diǎn)分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對(duì)值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當(dāng)時(shí),則所以當(dāng)時(shí),則當(dāng)時(shí),則綜上所述:(2)由當(dāng)且僅當(dāng)時(shí)取等號(hào)所以由,所以所以令根據(jù)柯西不等式,則當(dāng)且僅當(dāng),即取等號(hào)由故,又則本題考查使用零點(diǎn)分段法求解絕對(duì)值不等式以及柯西不等式的應(yīng)用,屬基礎(chǔ)題.20.見(jiàn)解析【解析】

(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學(xué)期望.(2)由題可得,所以,又,,所以,所以是以為首項(xiàng),為公比的等比數(shù)列.(3)由(2)可得.21.(1);(2)或.【解析】

(1)聯(lián)立直線方程與雙曲線方程,消去,得到關(guān)于的一元二次方程,根據(jù)根的判別式,即可求出結(jié)論;(2)設(shè),由(1)可得關(guān)系,再由直線l過(guò)點(diǎn),可得,進(jìn)而建立關(guān)于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個(gè)不同的交點(diǎn),則方程組有兩個(gè)不同的實(shí)數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個(gè)不同交點(diǎn)時(shí),k的取值范圍是.(2)設(shè)交點(diǎn),直線l與y軸交于點(diǎn),,.,即,整理得,解得或或.又,或時(shí),的面積為.本題考查直線與雙曲線的位置關(guān)系、三角形面積計(jì)算,要熟練掌握根與系數(shù)關(guān)系解決相交弦問(wèn)題,考查計(jì)算求解能力,屬于中檔題.22.(1);(2).【解析】

(1)求導(dǎo)得到,討論和兩種情況,計(jì)算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計(jì)算得到答案.(2)計(jì)算得到,討論,兩種情況,分別計(jì)算單調(diào)性得到函數(shù)最值,得到答

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論