2025年杜郎口中學第二學期高三期中考試數(shù)學試題試卷含解析_第1頁
2025年杜郎口中學第二學期高三期中考試數(shù)學試題試卷含解析_第2頁
2025年杜郎口中學第二學期高三期中考試數(shù)學試題試卷含解析_第3頁
2025年杜郎口中學第二學期高三期中考試數(shù)學試題試卷含解析_第4頁
2025年杜郎口中學第二學期高三期中考試數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年杜郎口中學第二學期高三期中考試數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.2.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+13.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)4.黨的十九大報告明確提出:在共享經(jīng)濟等領域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.5.設復數(shù)滿足(為虛數(shù)單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.7.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.128.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.199.設,則復數(shù)的模等于()A. B. C. D.10.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.411.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.1912.已知,則的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結論的序號是________________.14.已知函數(shù)的部分圖象如圖所示,則的值為____________.15.已知復數(shù)(為虛數(shù)單位),則的共軛復數(shù)是_____,_____.16.在中,,點是邊的中點,則__________,________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)設,若存在兩個極值點,,且,求證:;(2)設,在不單調,且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).18.(12分)已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.19.(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.20.(12分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標準方程;(2)求證:為定值.21.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.22.(10分)已知x∈R,設,,記函數(shù).(1)求函數(shù)取最小值時x的取值范圍;(2)設△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

結合題意可知是偶函數(shù),且在單調遞減,化簡題目所給式子,建立不等式,結合導函數(shù)與原函數(shù)的單調性關系,構造新函數(shù),計算最值,即可.【詳解】結合題意可知為偶函數(shù),且在單調遞減,故可以轉換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.本道題考查了函數(shù)的基本性質和導函數(shù)與原函數(shù)單調性關系,計算范圍,可以轉化為函數(shù),結合導函數(shù),計算最值,即可得出答案.2.B【解析】

以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.3.C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.4.D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果,故選D.5.A【解析】

由復數(shù)的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.本題考查復數(shù)對應的點所在象限的求解,涉及到復數(shù)的除法運算,屬于基礎題.6.D【解析】

由,可求出等比數(shù)列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設等比數(shù)列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質,考查學生的計算求解能力,屬于中檔題.7.C【解析】

分析:先畫出滿足約束條件對應的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標,代入目標函數(shù)求得最大值.詳解:作出不等式組對應的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當過點時,取得最大值9,故選C.點睛:該題考查的是有關線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應用相應的方法求解.8.B【解析】

由已知中的程序框圖可知,該程序的功能是利用循環(huán)結構計算并輸出變量的值,模擬程序的運行過程,代入四個選項進行驗證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.本題考查了程序框圖.當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用循環(huán)模擬或代入選項驗證的方法進行解答.9.C【解析】

利用復數(shù)的除法運算法則進行化簡,再由復數(shù)模的定義求解即可.【詳解】因為,所以,由復數(shù)模的定義知,.故選:C本題考查復數(shù)的除法運算法則和復數(shù)的模;考查運算求解能力;屬于基礎題.10.D【解析】

模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結束,輸出的值是4.故選:D.本題考查程序框圖,考查循環(huán)結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.11.B【解析】

由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.本題考查與遞推數(shù)列相關的方程的整數(shù)解的求法,注意將題設中的遞推關系變形得到新的遞推關系,從而可簡化與數(shù)列相關的方程,本題屬于難題.12.B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質比較a,c進而可得結論.【詳解】依題意,函數(shù)與函數(shù)關于直線對稱,則,即,又,所以,.故選:B.本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】

①點在平面內的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設,則由可得,然后對應邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③此題考查立體幾何中的垂直、平行關系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.14.【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:本題考查由圖象求解析式及函數(shù)值,考查學生識圖、計算等能力,是一道中檔題.15.【解析】

直接利用復數(shù)的乘法運算化簡,從而得到復數(shù)的共軛復數(shù)和的模.【詳解】,則復數(shù)的共軛復數(shù)為,且.故答案為:;.本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎的計算題.16.2【解析】

根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.本題主要考查了三角形的解法,向量的數(shù)量積的應用,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)先求出,又由可判斷出在上單調遞減,故,令,記,利用導數(shù)求出的最小值即可;(2)由在上不單調轉化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調遞減,令,記,則在上單調遞增;,在上單調遞增;,(2),,在上不單調,在上有正有負,在上有解,,,恒成立,記,則,記,,在上單調增,在上單調減.于是知(i)當即時,恒成立,在上單調增,,,.(ii)當時,,故不滿足題意.綜上所述,本題主要考查了導數(shù)的綜合應用,考查了分類討論,轉化與化歸的思想,考查了學生的運算求解能力.18.(1)曲線的標準方程為.拋物線的標準方程為.(2)見解析【解析】

(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點P的軌跡W是橢圓,寫出橢圓的標準方程,根據(jù)平面向量數(shù)量積運算和點A在拋物線上求出拋物線C的標準方程;(2)設出點P的坐標,再表示出點N和Q的坐標,根據(jù)題意求出的值,即可判斷結果是否成立.【詳解】(1)由題知,,所以,因此動點的軌跡是以,為焦點的橢圓,又知,,所以曲線的標準方程為.又由題知,所以,所以,又因為點在拋物線上,所以,所以拋物線的標準方程為.(2)設,,由題知,所以,即,所以,又因為,,所以,所以為定值,且定值為1.本題考查了圓錐曲線的定義與性質的應用問題,考查拋物線的幾何性質及點在曲線上的代換,也考查了推理與運算能力,是中檔題.19.(1);(2)①證明見解析;②能,.【解析】

(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設,,寫出切線的方程,解方程組求出點的坐標.設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.【詳解】(1)因為,所以,即拋物線C的方程是.(2)①證明:由得,.設,,則直線PA的方程為(?。?,則直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫海?,所以.設點,則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當點Q為,即為拋物線的焦點時,四邊形是矩形.本題考查拋物線的方程,考查直線和拋物線的位置關系,屬于難題.20.(1)(2)證明見解析【解析】

(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標,表示出,根據(jù)韋達定理即可求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論