廣東省肇慶市肇慶第四中學(xué)2022年中考猜題數(shù)學(xué)試卷含解析_第1頁
廣東省肇慶市肇慶第四中學(xué)2022年中考猜題數(shù)學(xué)試卷含解析_第2頁
廣東省肇慶市肇慶第四中學(xué)2022年中考猜題數(shù)學(xué)試卷含解析_第3頁
廣東省肇慶市肇慶第四中學(xué)2022年中考猜題數(shù)學(xué)試卷含解析_第4頁
廣東省肇慶市肇慶第四中學(xué)2022年中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省肇慶市肇慶第四中學(xué)2022年中考猜題數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,有一塊含有30°角的直角三角板的兩個頂點(diǎn)放在直尺的對邊上.如果∠2=44°,那么∠1的度數(shù)是()A.14°B.15°C.16°D.17°2.定義運(yùn)算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數(shù)y=2※x的圖象大致是()A. B.C. D.3.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°4.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.5.這個數(shù)是()A.整數(shù) B.分?jǐn)?shù) C.有理數(shù) D.無理數(shù)6.如圖,該圖形經(jīng)過折疊可以圍成一個正方體,折好以后與“靜”字相對的字是()A.著 B.沉 C.應(yīng) D.冷7.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.8.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個數(shù),那么,這個幾何體的左視圖是()A. B. C. D.9.如圖,已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為()A.90° B.95° C.105° D.110°10.下列命題中,真命題是()A.如果第一個圓上的點(diǎn)都在第二個圓的外部,那么這兩個圓外離B.如果一個點(diǎn)即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點(diǎn)到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點(diǎn)都在一個圓的外部,那么這條直線與這個圓相離二、填空題(本大題共6個小題,每小題3分,共18分)11.圖甲是小明設(shè)計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內(nèi)部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm12.在直角三角形ABC中,∠C=90°,已知sinA=3513.分解因式:x3-9x14.若函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點(diǎn),則常數(shù)m的值是.15.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足為點(diǎn)D,以點(diǎn)D為圓心作⊙D,使得點(diǎn)A在⊙D外,且點(diǎn)B在⊙D內(nèi).設(shè)⊙D的半徑為r,那么r的取值范圍是_________.16.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.三、解答題(共8題,共72分)17.(8分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.18.(8分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點(diǎn)A(,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點(diǎn),過M作直線l⊥x軸,與AC相交于點(diǎn)N,連接CM,求△CMN面積的最大值.19.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當(dāng)為何值時,AB?AC的值最大?20.(8分)九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品的每天利潤為y元[求出y與x的函數(shù)關(guān)系式;問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.21.(8分)P是⊙O內(nèi)一點(diǎn),過點(diǎn)P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點(diǎn)P關(guān)于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點(diǎn)P恰為弦AB的中點(diǎn),則點(diǎn)P關(guān)于⊙O的“冪值”為_____;②判斷當(dāng)弦AB的位置改變時,點(diǎn)P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點(diǎn)P關(guān)于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點(diǎn)P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.22.(10分)如圖,已知矩形ABCD中,AB=3,AD=m,動點(diǎn)P從點(diǎn)D出發(fā),在邊DA上以每秒1個單位的速度向點(diǎn)A運(yùn)動,連接CP,作點(diǎn)D關(guān)于直線PC的對稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動時間為t(s).(1)若m=5,求當(dāng)P,E,B三點(diǎn)在同一直線上時對應(yīng)的t的值.(2)已知m滿足:在動點(diǎn)P從點(diǎn)D到點(diǎn)A的整個運(yùn)動過程中,有且只有一個時刻t,使點(diǎn)E到直線BC的距離等于2,求所有這樣的m的取值范圍.23.(12分)已知:不等式≤2+x(1)求不等式的解;(2)若實數(shù)a滿足a>2,說明a是否是該不等式的解.24.“食品安全”受到全社會的廣泛關(guān)注,我區(qū)兼善中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為°;(2)請補(bǔ)全條形統(tǒng)計圖;(3)若對食品安全知識達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為2:3,現(xiàn)從中隨機(jī)抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

依據(jù)∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據(jù)BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.2、C【解析】

根據(jù)定義運(yùn)算“※”為:a※b=,可得y=2※x的函數(shù)解析式,根據(jù)函數(shù)解析式,可得函數(shù)圖象.【詳解】解:y=2※x=,當(dāng)x>0時,圖象是y=對稱軸右側(cè)的部分;當(dāng)x<0時,圖象是y=對稱軸左側(cè)的部分,所以C選項是正確的.【點(diǎn)睛】本題考查了二次函數(shù)的圖象,利用定義運(yùn)算“※”為:a※b=得出分段函數(shù)是解題關(guān)鍵.3、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點(diǎn)A′逆時針旋轉(zhuǎn)一定角度后,點(diǎn)B′恰好與點(diǎn)C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點(diǎn):1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定4、D【解析】先將25100用科學(xué)記數(shù)法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D5、D【解析】

由于圓周率π是一個無限不循環(huán)的小數(shù),由此即可求解.【詳解】解:實數(shù)π是一個無限不循環(huán)的小數(shù).所以是無理數(shù).

故選D.【點(diǎn)睛】本題主要考查無理數(shù)的概念,π是常見的一種無理數(shù)的形式,比較簡單.6、A【解析】

正方體的平面展開圖中,相對面的特點(diǎn)是中間必須間隔一個正方形,據(jù)此作答【詳解】這是一個正方體的平面展開圖,共有六個面,其中面“沉”與面“考”相對,面“著”與面“靜”相對,“冷”與面“應(yīng)”相對.故選:A【點(diǎn)睛】本題主要考查了利用正方體及其表面展開圖的特點(diǎn)解題,明確正方體的展開圖的特征是解決此題的關(guān)鍵7、B【解析】

根據(jù)正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小,進(jìn)行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點(diǎn)睛】此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點(diǎn)左側(cè),絕對值大的反而小.8、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.9、C【解析】

根據(jù)等腰三角形的性質(zhì)得到∠CDA=∠A=50°,根據(jù)三角形內(nèi)角和定理可得∠DCA=80°,根據(jù)題目中作圖步驟可知,MN垂直平分線段BC,根據(jù)線段垂直平分線定理可知BD=CD,根據(jù)等邊對等角得到∠B=∠BCD,根據(jù)三角形外角性質(zhì)可知∠B+∠BCD=∠CDA,進(jìn)而求得∠BCD=25°,根據(jù)圖形可知∠ACB=∠ACD+∠BCD,即可解決問題.【詳解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根據(jù)作圖步驟可知,MN垂直平分線段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故選C【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、三角形內(nèi)角和定理、線段垂直平分線定理以及三角形外角性質(zhì),熟練掌握各個性質(zhì)定理是解題關(guān)鍵.10、D【解析】

根據(jù)兩圓的位置關(guān)系、直線和圓的位置關(guān)系判斷即可.【詳解】A.如果第一個圓上的點(diǎn)都在第二個圓的外部,那么這兩個圓外離或內(nèi)含,A是假命題;B.如果一個點(diǎn)即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內(nèi)切或相交,B是假命題;C.如果一條直線上的點(diǎn)到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點(diǎn)都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點(diǎn)睛】本題考查了兩圓的位置關(guān)系:設(shè)兩圓半徑分別為R、r,兩圓圓心距為d,則當(dāng)d>R+r時兩圓外離;當(dāng)d=R+r時兩圓外切;當(dāng)R-r<d<R+r(R≥r)時兩圓相交;當(dāng)d=R-r(R>r)時兩圓內(nèi)切;當(dāng)0≤d<R-r(R>r)時兩圓內(nèi)含.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題分析:根據(jù),EF=4可得:AB=和BC的長度,根據(jù)陰影部分的面積為54可得陰影部分三角形的高,然后根據(jù)菱形的性質(zhì)可以求出小菱形的邊長為,則菱形的周長為:×4=.考點(diǎn):菱形的性質(zhì).12、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關(guān)系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點(diǎn):互余兩角三角函數(shù)的關(guān)系.13、x【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式。因此,先提取公因式x后繼續(xù)應(yīng)用平方差公式分解即可:x214、0或1【解析】分析:需要分類討論:①若m=0,則函數(shù)y=2x+1是一次函數(shù),與x軸只有一個交點(diǎn);②若m≠0,則函數(shù)y=mx2+2x+1是二次函數(shù),根據(jù)題意得:△=4﹣4m=0,解得:m=1?!喈?dāng)m=0或m=1時,函數(shù)y=mx2+2x+1的圖象與x軸只有一個公共點(diǎn)。15、.【解析】

先根據(jù)勾股定理求出AB的長,進(jìn)而得出CD的長,由點(diǎn)與圓的位置關(guān)系即可得出結(jié)論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD?BD=CD2,設(shè)AD=x,BD=1-x.解得x=,∴點(diǎn)A在圓外,點(diǎn)B在圓內(nèi),r的范圍是,故答案為.【點(diǎn)睛】本題考查的是點(diǎn)與圓的位置關(guān)系,熟知點(diǎn)與圓的三種位置關(guān)系是解答此題的關(guān)鍵.16、1【解析】

根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質(zhì)求出∠ACE=∠A=30°,再根據(jù)∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.三、解答題(共8題,共72分)17、38+12【解析】

根據(jù)∠ABC=90°,AE=CE,EB=12,求出AC,根據(jù)Rt△ABC中,∠CAB=30°,BC=12,求出根據(jù)DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出AD,從而得出DC的長,最后根據(jù)四邊形ABCD的周長=AB+BC+CD+DA即可得出答案.【詳解】∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12,∴AC=AE+CE=24,∵在Rt△ABC中,∠CAB=30°,∴BC=12,∵DE⊥AC,AE=CE,∴AD=DC,在Rt△ADE中,由勾股定理得∴DC=13,∴四邊形ABCD的周長=AB+BC+CD+DA=【點(diǎn)睛】此題考查了解直角三角形,用到的知識點(diǎn)是解直角三角形、直角三角形斜邊上的中線、勾股定理等,關(guān)鍵是根據(jù)有關(guān)定理和解直角三角形求出四邊形每條邊的長.18、(1);(2),;(3)【解析】試題分析:(1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征易得k=2;(2)作BH⊥AD于H,如圖1,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征確定B點(diǎn)坐標(biāo)為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點(diǎn)坐標(biāo)為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1;(3)利用M點(diǎn)在反比例函數(shù)圖象上,可設(shè)M點(diǎn)坐標(biāo)為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點(diǎn)N,得到N點(diǎn)的橫坐標(biāo)為t,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到N點(diǎn)坐標(biāo)為(t,t﹣1),則MN=﹣t+1,根據(jù)三角形面積公式得到S△CMN=?t?(﹣t+1),再進(jìn)行配方得到S=﹣(t﹣)2+(0<t<2),最后根據(jù)二次函數(shù)的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數(shù)解析式y(tǒng)=,得a=2,∴B點(diǎn)坐標(biāo)為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點(diǎn)坐標(biāo)為(0,﹣1),設(shè)直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設(shè)M點(diǎn)坐標(biāo)為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點(diǎn)N,∴N點(diǎn)的橫坐標(biāo)為t,∴N點(diǎn)坐標(biāo)為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當(dāng)t=時,S有最大值,最大值為.19、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點(diǎn)C為圓心,CE長為半徑作⊙C,與BC交于點(diǎn)F,于BC延長線交于點(diǎn)G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點(diǎn)M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點(diǎn)C為圓心,CE長為半徑作⊙C,與BC交于點(diǎn)F,于BC延長線交于點(diǎn)G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點(diǎn)M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點(diǎn)E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點(diǎn)睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握圓的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識點(diǎn).20、(1);(2)第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元;(3)41.【解析】

(1)根據(jù)單價乘以數(shù)量,可得利潤,可得答案.(2)根據(jù)分段函數(shù)的性質(zhì),可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案.(3)根據(jù)二次函數(shù)值大于或等于4800,一次函數(shù)值大于或等于48000,可得不等式,根據(jù)解不等式組,可得答案.【詳解】(1)當(dāng)1≤x<50時,,當(dāng)50≤x≤90時,,綜上所述:.(2)當(dāng)1≤x<50時,二次函數(shù)開口下,二次函數(shù)對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050,當(dāng)50≤x≤90時,y隨x的增大而減小,當(dāng)x=50時,y最大=6000,綜上所述,該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.(3)解,結(jié)合函數(shù)自變量取值范圍解得,解,結(jié)合函數(shù)自變量取值范圍解得所以當(dāng)20≤x≤60時,即共41天,每天銷售利潤不低于4800元.【點(diǎn)睛】本題主要考查了1.二次函數(shù)和一次函數(shù)的應(yīng)用(銷售問題);2.由實際問題列函數(shù)關(guān)系式;3.二次函數(shù)和一次函數(shù)的性質(zhì);4.分類思想的應(yīng)用.21、(1)①20;②當(dāng)弦AB的位置改變時,點(diǎn)P關(guān)于⊙O的“冪值”為定值,證明見解析;(2)點(diǎn)P關(guān)于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解析】【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;②過點(diǎn)P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;(2)連接OP、過點(diǎn)P作AB⊥OP,交圓O與A、B兩點(diǎn).由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點(diǎn)C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點(diǎn)P的坐標(biāo),然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點(diǎn)間的距離公式可得到關(guān)于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點(diǎn),∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當(dāng)弦AB的位置改變時,點(diǎn)P關(guān)于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點(diǎn)P的任意一條弦,且不與OP垂直,過點(diǎn)P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當(dāng)弦AB的位置改變時,點(diǎn)P關(guān)于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點(diǎn)P作AB⊥OP,交圓O與A、B兩點(diǎn),∵AO=OB,PO⊥AB,∴AP=PB,∴點(diǎn)P關(guān)于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關(guān)于⊙O的“冪值”=r2﹣d2,故答案為:點(diǎn)P關(guān)于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點(diǎn)C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點(diǎn)P的坐標(biāo)為(﹣﹣b,+b),∵點(diǎn)P關(guān)于⊙C的“冪值”為6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范圍是﹣3≤b≤,故答案為:﹣3≤b≤.【點(diǎn)睛】本題綜合性質(zhì)較強(qiáng),考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質(zhì)、相似三角形的性質(zhì)和判定、一次函數(shù)的交點(diǎn)問題、兩點(diǎn)間的距離公式等,依據(jù)兩點(diǎn)間的距離公式列出關(guān)于b的方程,從而求得b的極值是解題的關(guān)鍵.22、(1)1;(1)≤m<.【解析】

(1)在Rt△ABP中利用勾股定理即可解決問題;(1)分兩種情形求出AD的值即可解決問題:①如圖1中,當(dāng)點(diǎn)P與A重合時,點(diǎn)E在BC的下方,點(diǎn)E到BC的距離為1.②如圖3中,當(dāng)點(diǎn)P與A重合時,點(diǎn)E在BC的上方,點(diǎn)E到BC的距離為1.【詳解】解:(1):(1)如圖1中,設(shè)PD=t.則PA=5-t.

∵P、B、E共線,

∴∠BPC=∠DPC,

∵AD∥BC,

∴∠DP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論