2025屆浙江臺(tái)州中學(xué)下學(xué)期高三數(shù)學(xué)試題第五次月考考試試卷含解析_第1頁(yè)
2025屆浙江臺(tái)州中學(xué)下學(xué)期高三數(shù)學(xué)試題第五次月考考試試卷含解析_第2頁(yè)
2025屆浙江臺(tái)州中學(xué)下學(xué)期高三數(shù)學(xué)試題第五次月考考試試卷含解析_第3頁(yè)
2025屆浙江臺(tái)州中學(xué)下學(xué)期高三數(shù)學(xué)試題第五次月考考試試卷含解析_第4頁(yè)
2025屆浙江臺(tái)州中學(xué)下學(xué)期高三數(shù)學(xué)試題第五次月考考試試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆浙江臺(tái)州中學(xué)下學(xué)期高三數(shù)學(xué)試題第五次月考考試試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.62.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂(lè)”不排在第一節(jié),“射”和“御”兩門(mén)課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2403.()A. B. C.1 D.4.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過(guò)△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心5.設(shè),若函數(shù)在區(qū)間上有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知,如圖是求的近似值的一個(gè)程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.7.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長(zhǎng)度而得到,則函數(shù)的解析式為()A. B.C. D.8.已知雙曲線的一條漸近線經(jīng)過(guò)圓的圓心,則雙曲線的離心率為()A. B. C. D.29.點(diǎn)為的三條中線的交點(diǎn),且,,則的值為()A. B. C. D.10.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.11.計(jì)算等于()A. B. C. D.12.已知集合的所有三個(gè)元素的子集記為.記為集合中的最大元素,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在矩形中,為邊的中點(diǎn),,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.14.從分別寫(xiě)有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為_(kāi)_________.15.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實(shí)驗(yàn)表明,該藥物釋放量與時(shí)間的函數(shù)關(guān)系為(如圖所示),實(shí)驗(yàn)表明,當(dāng)藥物釋放量對(duì)人體無(wú)害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)______分鐘人方可進(jìn)入房間.16.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點(diǎn).若(點(diǎn)為坐標(biāo)原點(diǎn))的面積為32,且雙曲線的焦距為,則雙曲線的離心率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知某種細(xì)菌的適宜生長(zhǎng)溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個(gè)2530385066120218對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:20784.11123.8159020.5其中,.(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類(lèi)型(給出判斷即可,不必說(shuō)明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.18.(12分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實(shí)數(shù)x的取值范圍.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)把曲線向下平移個(gè)單位,然后各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(縱坐標(biāo)不變),設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.20.(12分)設(shè)點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且和直線相切.記動(dòng)圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),且直線與軸交于點(diǎn),設(shè),,求證:為定值.21.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長(zhǎng)度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說(shuō)明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.22.(10分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的值域;(2),,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當(dāng)且僅當(dāng)時(shí)取“=”號(hào).

答案:C本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最小);三相等是最后一定要驗(yàn)證等號(hào)能否成立,屬于基礎(chǔ)題.2.A【解析】

利用間接法求解,首先對(duì)6門(mén)課程全排列,減去“樂(lè)”排在第一節(jié)的情況,再減去“射”和“御”兩門(mén)課程相鄰的情況,最后還需加上“樂(lè)”排在第一節(jié),且“射”和“御”兩門(mén)課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂(lè)”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門(mén)課程相鄰時(shí)有(種),當(dāng)“樂(lè)”排在第一節(jié),且“射”和“御”兩門(mén)課程相鄰時(shí)有(種),則滿(mǎn)足“樂(lè)”不排在第一節(jié),“射”和“御”兩門(mén)課程不相鄰的排法有(種),故選:.本題考查排列、組合的應(yīng)用,注意“樂(lè)”的排列對(duì)“射”和“御”兩門(mén)課程相鄰的影響,屬于中檔題.3.A【解析】

利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長(zhǎng)公式可求得結(jié)果.【詳解】,,因此,.故選:A.本題考查復(fù)數(shù)模長(zhǎng)的計(jì)算,同時(shí)也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.4.A【解析】

根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.5.D【解析】令,可得.在坐標(biāo)系內(nèi)畫(huà)出函數(shù)的圖象(如圖所示).當(dāng)時(shí),.由得.設(shè)過(guò)原點(diǎn)的直線與函數(shù)的圖象切于點(diǎn),則有,解得.所以當(dāng)直線與函數(shù)的圖象切時(shí).又當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.選D.點(diǎn)睛:已知函數(shù)零點(diǎn)的個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對(duì)于一些比較復(fù)雜的函數(shù)的零點(diǎn)問(wèn)題常用此方法求解.6.C【解析】

由于中正項(xiàng)與負(fù)項(xiàng)交替出現(xiàn),根據(jù)可排除選項(xiàng)A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.7.A【解析】

由圖根據(jù)三角函數(shù)圖像的對(duì)稱(chēng)性可得,利用周期公式可得,再根據(jù)圖像過(guò),即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長(zhǎng)度而得到,所以.故選:A本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.8.B【解析】

求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.9.B【解析】

可畫(huà)出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出.【詳解】如圖:點(diǎn)為的三條中線的交點(diǎn),由可得:,又因,,.故選:B本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.10.D【解析】

由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問(wèn)題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯(cuò)點(diǎn)是忽略方程表示雙曲線對(duì)于的范圍的要求.11.A【解析】

利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對(duì)數(shù)運(yùn)算,求得所求表達(dá)式的值.【詳解】原式.故選:A本小題主要考查誘導(dǎo)公式,考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.12.B【解析】

分類(lèi)討論,分別求出最大元素為3,4,5,6的三個(gè)元素子集的個(gè)數(shù),即可得解.【詳解】集合含有個(gè)元素的子集共有,所以.在集合中:最大元素為的集合有個(gè);最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.此題考查集合相關(guān)的新定義問(wèn)題,其本質(zhì)在于弄清計(jì)數(shù)原理,分類(lèi)討論,分別求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由題意,可得所得到的幾何體是由一個(gè)圓柱挖去兩個(gè)半球而成;其中,圓柱的底面半徑為1,母線長(zhǎng)為2;體積為;兩個(gè)半球的半徑都為1,則兩個(gè)半球的體積為;則所求幾何體的體積為.考點(diǎn):旋轉(zhuǎn)體的組合體.14.【解析】

基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫(xiě)有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:本題考查古典概型概率的求法,考查運(yùn)算求解能力,求解時(shí)注意辨別概率的模型.15.240【解析】

(1)由時(shí),,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當(dāng)時(shí),,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過(guò)分鐘人方可進(jìn)入房間.故答案為:(1)2;(2)40本題主要考查了分段函數(shù)的應(yīng)用,屬于中檔題.16.或【解析】

用表示出的面積,求得等量關(guān)系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.本題考查雙曲線的方程與性質(zhì),考查運(yùn)算求解能力以及函數(shù)與方程思想,屬中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)作圖見(jiàn)解析;更適合(2)(3)預(yù)報(bào)值為245【解析】

(1)由散點(diǎn)圖即可得到答案;(2)把兩邊取自然對(duì)數(shù),得,由計(jì)算得到,再將代入可得,最終求得,即;(3)將代入中計(jì)算即可.【詳解】解:(1)繪出關(guān)于的散點(diǎn)圖,如圖所示:由散點(diǎn)圖可知,更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類(lèi)型;(2)把兩邊取自然對(duì)數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當(dāng)時(shí),計(jì)算可得;即溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為245.本題考查求非線性回歸方程及其應(yīng)用的問(wèn)題,考查學(xué)生數(shù)據(jù)處理能力及運(yùn)算能力,是一道中檔題.18.≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng)(a+b)·(a-b)≥0時(shí)取等號(hào),∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.19.(1),;(2).【解析】

(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時(shí)乘以得,進(jìn)而可化簡(jiǎn)得出曲線的直角坐標(biāo)方程;(2)根據(jù)變換得出的普通方程為,可設(shè)點(diǎn)的坐標(biāo)為,利用點(diǎn)到直線的距離公式結(jié)合正弦函數(shù)的有界性可得出結(jié)果.【詳解】(1)由(為參數(shù)),得,化簡(jiǎn)得,故直線的普通方程為.由,得,又,,.所以的直角坐標(biāo)方程為;(2)由(1)得曲線的直角坐標(biāo)方程為,向下平移個(gè)單位得到,縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線的方程為,所以曲線的參數(shù)方程為(為參數(shù)).故點(diǎn)到直線的距離為,當(dāng)時(shí),最小為.本題考查曲線的參數(shù)方程、極坐標(biāo)方程與普通方程的相互轉(zhuǎn)化,同時(shí)也考查了利用橢圓的參數(shù)方程解決點(diǎn)到直線的距離最值的求解,考查計(jì)算能力,屬于中等題.20.(1);(2)見(jiàn)解析.【解析】

(1)已知點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直線方程與拋物線方程聯(lián)立消元應(yīng)用韋達(dá)定理得,,由,,用橫坐標(biāo)表示出,然后計(jì)算,并代入,可得結(jié)論.【詳解】(1)設(shè)動(dòng)圓圓心,由拋物線定義知:點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,設(shè)其方

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論