2025年北京市西城區(qū)第四中學高三第一次聯(lián)考試卷(數(shù)學試題文)試題含解析_第1頁
2025年北京市西城區(qū)第四中學高三第一次聯(lián)考試卷(數(shù)學試題文)試題含解析_第2頁
2025年北京市西城區(qū)第四中學高三第一次聯(lián)考試卷(數(shù)學試題文)試題含解析_第3頁
2025年北京市西城區(qū)第四中學高三第一次聯(lián)考試卷(數(shù)學試題文)試題含解析_第4頁
2025年北京市西城區(qū)第四中學高三第一次聯(lián)考試卷(數(shù)學試題文)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025年北京市西城區(qū)第四中學高三第一次聯(lián)考試卷(數(shù)學試題文)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則向量與的夾角為()A. B. C. D.2.《普通高中數(shù)學課程標準(2017版)》提出了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲3.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定4.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.5.若復數(shù)滿足,則()A. B. C. D.6.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.7.己知函數(shù)若函數(shù)的圖象上關于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.8.定義在R上的函數(shù)滿足,為的導函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.9.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為10.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應填入的條件是()A.B.C.D.11.函數(shù)的一個零點在區(qū)間內(nèi),則實數(shù)a的取值范圍是()A. B. C. D.12.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是定義在上的奇函數(shù),當時,,則不等式的解集用區(qū)間表示為__________.14.已知等比數(shù)列的各項均為正數(shù),,則的值為________.15.已知函數(shù),曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.16.設函數(shù)滿足,且當時,又函數(shù),則函數(shù)在上的零點個數(shù)為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令.求數(shù)列的前n項和.18.(12分)在平面直角坐標系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.19.(12分)已知橢圓:()的左、右頂點分別為、,焦距為2,點為橢圓上異于、的點,且直線和的斜率之積為.(1)求的方程;(2)設直線與軸的交點為,過坐標原點作交橢圓于點,試探究是否為定值,若是,求出該定值;若不是,請說明理由.20.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.21.(12分)為了實現(xiàn)中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現(xiàn)代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產(chǎn)量,積極開展技術創(chuàng)新活動.該農(nóng)場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負責人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗,認為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.22.(10分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.2.D【解析】

根據(jù)雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎題.3.A【解析】

利用的坐標為,設直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎題4.A【解析】

由題可得出的坐標為,再利用點對稱的性質,即可求出和.【詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.5.C【解析】

化簡得到,,再計算復數(shù)模得到答案.【詳解】,故,故,.故選:.本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.6.B【解析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.7.B【解析】

考慮當時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當時,,故在上為增函數(shù),在上至多一個零點,舍.當時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.本題考查函數(shù)的零點,一般地,較為復雜的函數(shù)的零點,必須先利用導數(shù)研究函數(shù)的單調性,再結合零點存在定理說明零點的存在性,本題屬于難題.8.C【解析】

先從函數(shù)單調性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C本題考查了函數(shù)單調性和不等式的基礎知識,屬于中檔題.9.C【解析】

根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.10.B【解析】

根據(jù)計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應為或所以選C本題考查了程序框圖的簡單應用,根據(jù)結果填寫判斷框,屬于基礎題.11.C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個零點在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因為的一個零點在區(qū)間內(nèi),所以,即,解得,故選:C本題考查零點存在性定理的應用,屬于基礎題.12.A【解析】

直線的方程為,令,得,得到a,b的關系,結合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A本題考查直線與雙曲線的位置關系以及雙曲線的標準方程,考查運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(14.【解析】

運用等比數(shù)列的通項公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.本題考查等比數(shù)列的通項公式及應用,考查計算能力,屬于基礎題.15.4【解析】

由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4此題考查正弦函數(shù)的圖像和性質的應用及三角方程的求解,熟練應用三角函數(shù)的圖像和性質是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.16.1【解析】

判斷函數(shù)為偶函數(shù),周期為2,判斷為偶函數(shù),計算,,畫出函數(shù)圖像,根據(jù)圖像到答案.【詳解】知,函數(shù)為偶函數(shù),,函數(shù)關于對稱。,故函數(shù)為周期為2的周期函數(shù),且。為偶函數(shù),,,當時,,,函數(shù)先增后減。當時,,,函數(shù)先增后減。在同一坐標系下作出兩函數(shù)在上的圖像,發(fā)現(xiàn)在內(nèi)圖像共有1個公共點,則函數(shù)在上的零點個數(shù)為1.故答案為:.本題考查了函數(shù)零點問題,確定函數(shù)的奇偶性,對稱性,周期性,畫出函數(shù)圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項和.試題解析:(1)由題意知當時,,當時,,所以.設數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點1、待定系數(shù)法求等差數(shù)列的通項公式;2、利用“錯位相減法”求數(shù)列的前項和.【易錯點晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項公式、利用“錯位相減法”求數(shù)列的前項和,屬于難題.“錯位相減法”求數(shù)列的前項和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.18.(1).(2)的方程為.【解析】

(1)令,則,由此能求出點C的軌跡方程.(2)令,令直線,聯(lián)立,得,由此利用根的判別式,韋達定理,三角形面積公式,結合已知條件能求出直線的方程。【詳解】解:(1)因為,即直線的斜率分別為且,設點,則,整理得.(2)令,易知直線不與軸重合,令直線,與聯(lián)立得,所以有,由,故,即,從而,解得,即。所以直線的方程為。本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關系,考查運算求解能力,考查化歸與轉化思想,是中檔題。19.(1)(2)是定值,且定值為2【解析】

(1)設出點坐標并代入橢圓方程,根據(jù)列方程,求得的值,結合求得的值,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點的橫坐標,聯(lián)立直線的方程和橢圓方程,求得,由此化簡求得為定值.【詳解】(1)已知點在橢圓:()上,可設,即,又,且,可得橢圓的方程為.(2)設直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問題的求解,考查直線和橢圓的位置關系,考查運算求解能力,屬于中檔題.20.(1)(2)證明見解析(3)證明見解析【解析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設其公差為,,是一個單調遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當數(shù)列是等差數(shù)列時,設其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當時,則必有,∴,∴是一個單調遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調性,考查化歸與轉化的數(shù)學思想方法,屬于難題.21.(1)見解析;(2)(i)該農(nóng)場若采用延長光照時間的方法,預計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預計每年的利潤為424千元;(3)分布列見解析,.【解析】

(1)估計第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論